Fuzzy 6

Murat Osmanoglu

<u>Proposition</u>: a sentence that states a fact, true or false (not both) (the thruthness of the sentence can be evaluated)

- Istanbul is the biggest city of Turkey
- 2 + 3 = 5
- 2 + 1 = 4
- Antalya is the capital city of Turkey
- 2 + x = 8
- Ankara is the best place to live on Earth

letters p, q, r, s are mostly used to represent propositional variables

most of the mathematical statements are constructed by combining one or more propositions using logical operators (connectives)

Negation (~p): "it's not the case that p" or "not p".

```
p: 2 + 3 = 5,
~p: it is not the case that 2 + 3 = 5
~p: 2 + 3 ≠ 5
```

Negation (~p): "it's not the case that p" or "not p".

• p:2+3=5,

 \sim p: it is not the case that 2 + 3 = 5

 $p: 2 + 3 \neq 5$

р	~p
Т	F
۴	Τ

Conjunction $(p \land q)$: "p and q".

p: Ali passed the courseq: Hasan passed the course

p \wedge q: Ali and Hasan both passed the course.

Conjunction $(p \land q)$: "p and q".

• p: Ali passed the course

q: Hasan passed the course

p \wedge q: Ali and Hasan both passed the course.

р	q	p∧q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Disjunction $(p \lor q)$: "p or q".

p: Ali passed the course
 q: Hasan passed the course

 $p \lor q$: Ali or Hasan passed the course.

Disjunction $(p \lor q)$: "p or q".

• p: Ali passed the course

q: Hasan passed the course

 $p \lor q$: Ali or Hasan passed the course.

р	q	p∨q
Т	Τ	Т
Т	F	Т
F	Т	Т
F	F	F

Conditional Statement $(p \rightarrow q)$: "if p, then q" (p implies q).

```
p: it rainsq: the ground is wet
```

 $p \rightarrow q$: If it rains, then the ground will be wet.

<u>Conditional Statement ($p \rightarrow q$)</u>: "if p, then q" (p implies q).

• p: it rains

q: the ground is wet

 $p \rightarrow q$: If it rains, then the ground will be wet.

р	q	p q	
Т	Т	Т	
Т	F	F	
F	Т	T	
F	F	Т	

Truth Tables

$$p \rightarrow (p \lor q)$$

$$p \wedge (\sim p \wedge q)$$

Truth Tables

$$p \rightarrow (p \lor q)$$

$$p \wedge (\sim p \wedge q)$$

р	q	p∨q	p → (p∨q)	~p	~p∧q	p ∧ (~p ∧ q)
1	1	1	1	0	0	0
1	0	1	1	0	0	0
0	1	1	1	1	1	0
0	0	0	1	1	0	0

Truth Tables

$$p \rightarrow (p \lor q)$$

$$p \wedge (\sim p \wedge q)$$

р	q	p∨q	p → (p∨q)	~p	~p∧q	p ∧ (~p ∧ q)
1	1	1	1	0	0	0
1	0	1	1	0	0	0
0	1	1	1	1	1	0
0	0	0	1	1	0	0

 A compound proposition is called tautology if it's true for all the cases

Truth Tables

$$p \rightarrow (p \lor q)$$

$$p \wedge (\sim p \wedge q)$$

р	q	p∨q	p → (p∨q)	~p	~p∧q	p ∧ (~p ∧ q)
1	1	1	1	0	0	0
1	0	1	1	0	0	0
0	1	1	1	1	1	0
0	0	0	1	1	0	0

- A compound proposition is called tautology if it's true for all the cases
- A compound proposition is called contradiction if it's false for all the cases

• De Morgan's Low
$$\sim$$
(p \vee q) = \sim p \wedge \sim q \sim (p \wedge q) = \sim p \vee \sim q

•
$$\sim (\sim p) = p$$

•
$$p \land 0 = 0$$

 $p \lor 1 = 1$

•
$$p \rightarrow q = \sim p \lor q$$

 $p \rightarrow q = \sim q \rightarrow \sim p$

• p: '2 + 3 = 5'

q: 'my computer is vulnerable to side channel attacks'

• P(x): 'x + 3 = 5'

Q(x): 'computer x is vulnerable to side channel attacks'

<u>Predicate</u> Propositions (or statements) that contains variables

• When a value is assigned to the variable x, then P(x) becomes a proposition and has a truth value.

Fuzzy Proposition: have its truth value from [0,1]

- Mehmet is young
- Ferrari is expensive
- 3 + 4 = 9

Fuzzy Proposition: have its truth value from [0,1]

- Mehmet is young
- Ferrari is expensive
- 3 + 4 = 9

Operators in Fuzzy Logic

Let a and b be the truth values for the fuzzy propositions p and q

Fuzzy Proposition: have its truth value from [0,1]

- Mehmet is young
- Ferrari is expensive
- 3 + 4 = 9

Operators in Fuzzy Logic

Let a and b be the truth values for the fuzzy propositions p and q

- ~p : 1 a
- $p \wedge q : min(a, b)$
- $p \lor q : max(a, b)$
- $p \rightarrow q : max (1 a, min(a, b))$

Fuzzy Proposition: have its truth value from [0,1]

- Mehmet is young
- Ferrari is expensive
- 3 + 4 = 9

Operators in Fuzzy Logic

Let a and b be the truth values f

- ~p : 1 a
- $p \land q : min(a, b)$
- $p \lor q : max(a, b)$
- $p \rightarrow q : max (1 a, min(a, b))$

$$a = 0.4$$
, $b = 0.8$

 $p \wedge q : min(a, b) : 0.4$

 $p \lor q : max (a, b) : 0.8$

 $p \rightarrow q : max (1 - a, min(a, b)) : 0.6$

Fuzzy Predicate: its definition contains ambiguity

- x is young
- y is expensive
- young(x) and expensive(y) are fuzzy sets
- the truth value can be considered as the membership function