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Definitions
• Its origin : logos (Greek), ‘the word’ or ‘what is spoken’

• ‘thought’ or ‘reason’

• ‘art of reason’, or ‘science of reasoning’

• systematic study of the form of valid arguments

(study of the difference between valid arguments and invalid arguments)

(finding out what it is that makes a valid argument valid)    



Definitions
argument : sequence of sentences (propositions); premises at 

the beginning and conclusion at the end

if the premises are all true, then the conclusion
must be true

1)  All men are mortal
Socrates is a man

Socrates is mortal

2)  John will come to the party, or Mary will come to the party
John will not come to the party

Mary will come to the party

premises

conclusion



Proposition : a sentence that states a fact, true or false (not both)
(the thruthness of the sentence can be evaluated)

• Istanbul is the biggest city of Turkey
• 2 + 3 = 5
• 2 + 1 = 4
• Antalya is the capital city of Turkey
• 2 + x = 8
• Ankara is the best place to live on Earth

letters p, q, r, s are mostly used to represent propositional
variables

most of the mathematical statements are constructed by
combining one or more propositions using logical operators

(connectives)

Definitions



Negation (~p) : “it’s not the case that p” or “not p” . 

• p : 2 + 3 = 5, 

~p : it is not the case that 2 + 3 = 5 
~p : 2 + 3 ≠ 5

p ~p

T F

F T

Logical Operators



Conjunction (p∧q) : “p and q” . 

• p : Ali passed the course
q : Hasan passed the course

p ∧ q : Ali and Hasan both passed the course. 

p q p ∧ q

T T T

T F F

F T F

F F F

Logical Operators



Disjunction (p∨q) : “p or q” . 

• p : Ali passed the course
q : Hasan passed the course

p ∨ q : Ali or Hasan passed the course. 

p q p ∨ q

T T T

T F T

F T T

F F F

Logical Operators



Exclusive or (p⊕q) : “p exclusive or q” . 

• p : Ali passed the course
q : Hasan passed the course

p ⊕ q : Ali or Hasan, but not both, passed the course. 

p q p ⊕ q

T T F

T F T

F T T

F F F

Logical Operators



Conditional Statement (p→q) : “if p, then q” (p implies q). 

• p : it rains
q : the ground is wet

p → q : If it rains, then the ground will be wet. 

p q p → q

T T T

T F F

F T T

F F T

Logical Operators



Biconditional Statement (p↔q) : “p if and only if q” (p implies q and
q implies p). 

• p : you can take the flight
q : you have a ticket

p ↔ q : you can take the flight if and only if you have a ticket. 

p q p → q q → p p ↔ q

T T T T T

T F T F F

F T F T F

F F T T T

Logical Operators



Truth Tables

(p∨~q ) → (p ∧ q)

p q ~q p ∧ q p∨~q (p∨~q ) → (p ∧ q)

1 1 0 1 1 1

1 0 1 0 1 0

0 1 0 0 0 1

0 0 1 0 1 0

Logical Operators



Truth Tables

q ↔ (~p∨~q)

p q ~p ~q ~p∨~q q ↔ (~p∨~q)

1 1 0 0 0 0

1 0 0 1 1 0

0 1 1 0 1 1

0 0 1 1 1 0

Logical Operators



Truth Tables

p → (p∨q) p ∧ (~p ∧ q)

p q p∨q p → (p∨q) ~p ~p∧q p ∧ (~p ∧ q)

1 1 1 1 0 0

1 0 1 1 0 0

0 1 1 1 1 1

0 0 0 1 1 0

Logical Operators



Truth Tables

p → (p∨q) p ∧ (~p ∧ q)

p q p∨q p → (p∨q) ~p ~p∧q p ∧ (~p ∧ q)

1 1 1 1 0 0 0

1 0 1 1 0 0 0

0 1 1 1 1 1 0

0 0 0 1 1 0 0

• A compound proposition is called tautology if it’s true for all the
cases

• A compound proposition is called contradiction if it’s false for all
the cases

Logical Operators



Logical Equivalences

p q ~p ~p∨q p → q

1 1 0 1 1

1 0 0 0 0

0 1 1 1 1

0 0 1 1 1

• If the compound propositions p and q have same truth
values for all the cases, they are called logically equivalent

p q ~p ~q ~(p ∧ q) ~p∨~q

1 1 0 0 0 0

1 0 0 1 1 1

0 1 1 0 1 1

0 0 0 1 1 1

~p∨q ≡ p → q

De Morgan’s Low
~(p ∨ q) ≡ ~p ∧ ~q
~(p ∧ q) ≡ ~p∨~q



Logical Equivalences

• De Morgan’s Low
~(p ∨ q) ≡ ~p ∧ ~q
~(p ∧ q) ≡ ~p ∨ ~q

• ~(~p) ≡ p

• p ∧ 1 ≡ p
p ∨ 0 ≡ p

• p ∧ 0 ≡ 0
p ∨ 1 ≡ 1

• p ∧ p ≡ p
p ∨ p ≡ p

• (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

• p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) 
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) 

• p ∧ ~ p ≡ 0
p ∨ ~ p ≡ 1

• p → q ≡ ~p∨q
p → q ≡ ~q → ~p



Logical Equivalences

• ~(p ∨ (~p ∧ q)  ≡ ~p ∧ ~(~p ∧ q)
≡ ~p ∧ (p ∨ ~q)
≡ (~p ∧ p) ∨ (~p ∧ ~q)
≡ 0 ∨ (~p ∧ ~q)
≡ ~p ∧ ~q

• (p → r) ∧ (p → q) ≡ (~p∨r) ∧ (~p∨q)
≡ ~p ∨ (r ∧ q)
≡ p → (r ∧ q)



Predicates
• p : ‘2 + 3 = 5’

q : ‘my computer is vulnerable to side channel attacks’

• P(x) : ‘x + 3 = 5’ 

Q(x) : ‘computer x is vulnerable to side channel attacks’  

Definition Propositions (or statements) that contains
variables

• When a value is assigned to the variable x, then P(x) 
becomes a proposition and has a truth value. 



Predicates

• P(x) : ‘x > 3’ 
P(4) is true, but P(2) is false

• Q(x,y) : ‘x + 3 = y’
Q(4,7) is true, but Q(4,2) is false

• R(x,y,z) : ‘x + y = z’ 
R(2,1,3) is true, but R(3,2,2) is false



Quantifiers
• Another way of creating a proposition from a propositional

function

Universal Quantifier

Q : ∀x P(x)       If P(x) is true for all x in the domain, 
then Q is true
If there is an 𝑥0 such that P(𝑥0) is not 
true, then Q is false

Existential Quantifier

R : ∃x P(x) If there exists an 𝑥0 such that P(𝑥0) is true,
then R is true
If P(x) is false for all x in the domain,
then R is false



Quantifiers

• P(x) : 𝑥2 ≥ 𝑥

What is the truth value of ∀x P(x) if the domain is 𝑍+ ?

For all 𝑥 ∈ 𝑍+ 𝑥2 ≥ 𝑥 . So ∀x P(x) is true for 𝑍+ .

• Q(x) : x = x + 1

What is the truth value of ∃x Q(x) if the domain is R?

There is no real number x such that x = x + 1. So ∃x Q(x) is 
false for R.  



Quantifiers

• P(x) : 𝑥2 + 1 < 10 , D = { 1, 2, 3}

What is the truth value of ∀x P(x) if the domain is D?

If the domain consists of n elements, 
then ∀x P(x) ≡ P(𝑥1) ∧ P(𝑥2) ∧ . . . ∧ P(𝑥𝑛)

P(1) : 2 < 10,   true
P(2) : 5 < 10,   true
P(3) : 10 < 10,   false

Since   1 ∧ 1 ∧ 0 ≡ 0,  then ∀x P(x) is false for D.  



Quantifiers

• Q(x) : 𝑥2 < 3 ,     D = {1, 2, 3}

What is the truth value of ∃x Q(x) if the domain is D?

If the domain consists of n elements, 
then ∃x P(x) ≡ P(𝑥1) ∨ P(𝑥2) ∨ . . . ∨ P(𝑥𝑛) 

P(1) : 1 < 3,   true
P(2) : 4 < 3,   false
P(3) : 9 < 3,   false

Since   1 ∨ 0 ∨ 0 ≡ 1,  then ∃x P(x) is true for D.



Quantifiers

• Every student in this class has entered the entrance exam

∀x P(x),    ‘ x has taken the entrance exam’  

Negation

• It’s not the case that every student in this class has entered
the entrance exam. 

There is a student in this class who has not taken the entrance
exam. 

~(∀x P(x)) ≡ ~(P(𝑥1) ∧ P(𝑥2) ∧ . . . ∧ P(𝑥𝑛))
≡ ~P(𝑥1) ∨ ~P(𝑥2) ∨ . . . ∨ ~P(𝑥𝑛)
≡ ∃x ~P(x) 



Quantifiers

• There is a student in this class who has taken the entrance
exam. 

∃x P(x),    ‘ x has taken the entrance exam’  

Negation

• It’s not the case that There is a student in this class who has 
taken the entrance exam

None of the students in this class has taken the entrance
exam. 

~(∃x P(x)) ≡ ~(P(𝑥1) ∨ P(𝑥2) ∨ . . . ∨ P(𝑥𝑛))
≡ ~P(𝑥1) ∧ ~P(𝑥2) ∧ . . . ∧ ~P(𝑥𝑛)
≡ ∀x ~P(x) 



Quantifiers

• ~(∀𝑥 𝑥2 > 𝑥 ) ≡ ∃x ~(𝑥2 > 𝑥)
≡ ∃x 𝑥2 ≤ 𝑥

• ~(∃𝑥 𝑥2 = 7 ) ≡ ∀x ~(𝑥2 = 7)
≡ ∀x 𝑥2 ≠ 7



Quantifiers

• ∀𝑥 ∀𝑦 ((𝑥 > 0) ∧ 𝑦 < 0 → 𝑥𝑦 < 0 )

If x is positive and y is negative, 
then xy is negative

For every real numbers x and y,  if x is positive and y is 
negative, then xy is negative

D = R



Quantifiers

∀𝑥 ∀𝑦 ((𝑥 > 0) ∧ 𝑦 > 0 → 𝑥 + 𝑦 > 0 )

• For every two integers, if these integers are both positive, 
then the sum of these integers is also positive

• For two integers x and y, if 𝑥 > 0 and 𝑦 > 0, then x + 𝑦 > 0



Quantifiers
• There exist integers x and y such that 𝑥 + 𝑦 = 6

∃𝑥 ∃𝑦 (𝑥 + 𝑦 = 6)
or

∃𝑦 ∃𝑥 𝑥 + 𝑦 = 6

• ∀𝑥 ∃𝑦 (𝑥 + 𝑦 = 6)

For every integer x, there exists an integer y such that
𝑥 + 𝑦 = 6 (It’s true)

• ∃y ∀𝑥 (𝑥 + 𝑦 = 6)

There exists an integer y so that for all integers x,
𝑥 + 𝑦 = 6 (It’s false)



Proofs
• Valid arguments that establish the truth of mathematical

statements

argument : sequence of sentences (propositions); premises at 
the beginning and conclusion at the end



Proofs
• An argument is called valid if the truthness of all its

premises implies that the conlusion is true

• If you have a password, then
you can log onto the network.

• You have a password

• Therefore,
you can log onto the network 

p → q

p

q



Proofs

Modus Ponens

p → q

p

q

p q p → q p ∧ (p → q) [p ∧ (p → q)] → q

1 1 0 0 1

1 0 1 1 1

0 1 1 0 1

0 0 1 0 1



Proofs

Modus Ponens

• If 5 > 3, then ( 5)2> ( 3)2.           p → q

• We know that 5 > 3 p

• So, ( 5)2> ( 3)2 → 5 > 3 q



Proofs

• To prove ∀𝑥 (𝑃 𝑥 → 𝑄 𝑥 ), show that 𝑃 𝑐 → 𝑄 𝑐 is 
true for an arbitrary element c of the domain. 

• To prove 𝑃 𝑐 → 𝑄 𝑐 , show that 𝑄 𝑐 is true if 𝑃 𝑐 is 
true (p → q is true unless p is true but q is false)  

Direct Proof

• To prove p → q is true, first assume p is true, then
show that q must also be true. 

• Thus, if p is true, then q must also be true, so that the
combination of p true and q false never occurs



Proofs

Direct Proof

If 𝑛 is odd integer, then 𝑛2 is odd integer.     

p q

p→ q assume p is true

𝑛 = 2𝑘 + 1, ∃𝑘 ∈ 𝑍
𝑛2 = (2𝑘 + 1)2

𝑛2 = 4𝑘2 + 2𝑘 + 1
𝑛2 = 2 2𝑘2 + 𝑘 + 1
𝑛2 = 2𝑚 + 1, ∃𝑚 ∈ 𝑍

q is also true



Proofs

Direct Proof

If 𝑚 and 𝑛 are perfect squares, then 𝑚. 𝑛 is also a perfect square.     

p q

p→ q assume p is true

𝑚 = 𝑥2 and 𝑛 = 𝑦2, ∃𝑥, 𝑦 ∈ 𝑍
𝑚. 𝑛 = 𝑥2𝑦2

𝑚. 𝑛 = (𝑥. 𝑦)2

𝑚. 𝑛 = 𝑘2, ∃𝑘 ∈ 𝑍

q is also true



Proofs

Proof by Contraposition

If 3𝑛 + 2 is an odd integer, then 𝑛 is odd integer

p q

p→ q assume p is true

3𝑛 + 2 = 2𝑘 + 1, ∃𝑘 ∈ 𝑍
3𝑛 = 2𝑘 − 1

𝑛 =
2𝑘−1

3



Proofs

Proof by Contraposition

If 3𝑛 + 2 is an odd integer, then 𝑛 is odd integer

If n is not odd integer, then 3𝑛 + 2 is not odd integer

p → q ≡ ~q → ~p

~p~q

assume ~q is true 𝑛 = 2𝑘, ∃𝑘 ∈ 𝑍
3𝑛 + 2 = 6𝑘 + 8
3𝑛 + 2 = 2(3𝑘 + 4)
3𝑛 + 2 = 2𝑚, ∃𝑚 ∈ 𝑍
~p is also true



Proofs

Proof by Contraposition

Prove that for all real numbers 𝑥 and 𝑦, if 𝑥 + 𝑦 ≥ 100, 
then 𝑥 ≥ 50 or y ≥ 50.

If 𝑥 < 50 and y < 50, then 𝑥 + 𝑦 < 100

p → q ≡ ~q → ~p

~p~q

assume ~q is true 𝑥 < 50 and y < 50

𝑥 + 𝑦 < 100

~p is also true



Proofs

Proof by Contradiction

• To prove that ‘p is true’, find a contradiction q such
that ~p → q is true. 

~p → q

F→ F ≡ T 

q ≡ r ∧ ~r ≡ 0   
• assuming ‘~p is true‘ leads

us a contradiction



Proofs

Proof by Contradiction

• Prove that the sum of an irrational number and rational
number is irrational. 

Assume that the sum of an irrational number x and a rational
number y is rational. (~p is true) 

𝑦 =
𝑎

𝑏
and 𝑥 + 𝑦 =

𝑐

𝑑
, ∃ 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑍

There is no integers e,f such that 𝑥 =
𝑒

𝑓
(the proposition r)

𝑥 + 𝑦 =
𝑐

𝑑
→ 𝑥 +

𝑎

𝑏
=

𝑐

𝑑
→ 𝑥 =

𝑐

𝑑
-
𝑎

𝑏
→ 𝑥 =

𝑒

𝑓
, ∃ 𝑒, 𝑓 ∈ 𝑍 (~r) 

~p → (r ∧ ~r) : assuming ‘~p is true’ leads us a contradiction.



Proofs

Proof by Contradiction

• Prove that if 3𝑛 + 2 is an odd integer, then 𝑛 is odd integer

Assuming ‘p ∧ ~q is not true’ leads us a contradiction.

3𝑛 + 2 is an odd integer and 𝑛 is even integer. (p ∧ ~q)

𝑛 = 2𝑘, ∃ 𝑘 ∈ 𝑍. So 3𝑛 + 2 = 6𝑘 + 2 = 2 3𝑘 + 1 = 2𝑚, ∃ 𝑚 ∈ 𝑍

3𝑛 + 2 is an even integer. (Contradiction!)

p q


