Sets

Murat Osmanoglu

Definitions

- A set is an unordered (well-defined) collection of objects.
- These objects are called elements (or members) of the set.
- $x \in A, x$ is an element of the $\operatorname{set} A$
- $x \notin A, x$ is not an element of the set A

Definitions

- $Z=\{2,-22,12,0,43,-1287, \ldots\}$

$$
Z=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- $A=\left\{x \in Z^{+} \mid x<10\right\}$ (set builder or common property)

$$
B=\left\{x \in Z \mid x^{2}<10\right\}
$$

- Venn Diagram

Definitions

- Two sets are equal if and only if they have same elements. A and B are equal if and only if $\forall x(x \in A \leftrightarrow x \in B)$.

$$
A=\left\{x \in Z^{+} \mid x<6\right\} \text { and } B=\{1,2,3,4,5\}, A=B
$$

- The universal set, denoted by U, contains all possible elements under the consideration
- The empty set, denoted by \emptyset, has no element

Definitions

- A set A is a subset of a set B if and only if every element of A is also an element of B.
$\mathrm{A} \subseteq \mathrm{B} \leftrightarrow \forall x[x \in A \rightarrow x \in B]$

$$
\begin{aligned}
\mathrm{A} \nsubseteq \mathrm{~B} & \leftrightarrow \sim \forall x[x \in A \rightarrow x \in B] \\
& \leftrightarrow \exists x \sim[x \in A \rightarrow x \in B] \\
& \leftrightarrow \exists x \sim[\sim x \in A \vee x \in B] \quad(\mathrm{p} \rightarrow \mathrm{q} \equiv \sim \mathrm{p} \vee \mathrm{q}) \\
& \leftrightarrow \exists x[x \in A \wedge \sim x \in B] \\
& \leftrightarrow \exists x[x \in A \wedge x \notin B]
\end{aligned}
$$

Definitions

- A set A is a subset of a set B if and only if every element of A is also an element of B.
$\mathrm{A} \subseteq \mathrm{B} \leftrightarrow \forall x[x \in A \rightarrow x \in B]$
- $\varnothing \subseteq A$ and $A \subseteq A$.
- $A=B$ if and only if $A \subseteq B$ and $B \subseteq A$

Definitions

$A=\{x \mid x=4 k+1$ for some $k \in Z\}$,
$B=\{x \mid x=4 k-3$ for some $k \in Z\}$
Show that whether the sets A and B are equal or not.
$(A \subseteq B)$ For any $x \in A, x=4 k+1$ for some $k \in Z$

$$
\begin{aligned}
& x=4 k+1+3-3 \\
& x=4(k+1)-3 \\
& x=4 m-3 \text { for some } m \in Z, \text { so } x \in B
\end{aligned}
$$

($B \subseteq A$) For any $x \in B, x=4 k-3$ for some $k \in Z$

$$
\begin{aligned}
& x=4 k-3+1-1 \\
& x=4(k-1)+1 \\
& x=4 m+1 \text { for some } m \in Z, \text { so } x \in A
\end{aligned}
$$

Thus, $A=B$.

Definitions

- A set A is a subset of a set B if and only if every element of A is also an element of B.

$$
\mathrm{A} \subseteq \mathrm{~B} \leftrightarrow \forall x[x \in A \rightarrow x \in B]
$$

- $\varnothing \subseteq A$ and $A \subseteq A$.
- $A=B$ if and only if $A \subseteq B$ and $B \subseteq A$
- A set A is a proper subset of a set B if and only if $A \subseteq B$ and $A \neq B$

$$
B=\left\{x \in Z^{+} \mid x<10\right\} \text { and } A=\{1,2,3,4,5\}, A \subseteq B
$$

Definitions

- The cardinality of a set A is defined as the size of A. It's denoted by IAI. (only for finite set)

For the set $A=\left\{x \in Z^{+} \mid x<10\right\},|A|=9$

- The power set of a given set is the set of all possible subsets.

$$
\begin{array}{lll}
S=\{1\} & P(S)=\{\emptyset,\{1\}\} & |P(S)|=2 \\
S=\{a, b\} & P(S)=\{\emptyset,\{a\},\{b\},\{a, b\}\} & |P(S)|=4
\end{array}
$$

- If $|S|=n$, then $|P(S)|=2^{n}$

Set Operations

- The union of A and B, denoted by $A \cup B$, contains elements that are either in A or B.

$$
\mathrm{A} \cup \mathrm{~B}=\{x \mid x \in A \quad \vee \quad x \in B\}
$$

- The intersection of A and B, denoted by $A \cap B$, contains elements that are in both A or B.

$$
\mathrm{A} \cap \mathrm{~B}=\{x \mid x \in A \quad \wedge \quad x \in B\}
$$

The sets A and B are called disjoint sets if $A \cap B=\varnothing$

- The difference of A and B, denoted by $A-B$, contains elements that are in A but not in B

$$
\mathrm{A} \cap \mathrm{~B}=\{x \mid x \in A \wedge x \notin B\}
$$

- The complement of A, denoted by \bar{A}, contains elements that are in U but not in A.

$$
\overline{\mathrm{A}}=\{x \in U \mid x \notin A\}
$$

Set Operations

- $A \cup \emptyset=A$ $A \cap U=A$
- $A \cup U=U$ $A \cap \varnothing=\varnothing$
- $A \cup A=A$ $\mathrm{A} \cap \mathrm{A}=\mathrm{A}$
- $\mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}$ $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
- $\mathrm{A} \cap \overline{\mathrm{A}}=\varnothing$ $A \cup \bar{A}=U$
- $\overline{(\overline{\mathrm{A}})}=\mathrm{A}$
- $\begin{aligned} \overline{(\mathrm{A} \cup \mathrm{B})} & =\overline{\mathrm{A}} \cap \overline{\mathrm{B}} \text { (De Morgan) } \\ \overline{(\mathrm{A} \cap \mathrm{B})} & =\overline{\mathrm{A}} \cup \overline{\mathrm{B}}\end{aligned}$

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Cartesian Products

- The cartesian product of A and B, denoted by $A \times B$, is the set of all pairs (x, y) where $x \in A$ and $y \in B$

$$
A \times B=\{(x, y) \mid x \in A \quad \wedge \quad y \in B\}
$$

- $A=\{a, b\}, B=\{1,2,3\}$

$$
A \times B=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\}
$$

$|A \times B|=|A| .|B|$

- The Cartesian products of the sets $A_{1}, A_{2}, \ldots, A_{n}$ is the set of ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots, a_{n} \in A_{n}$.

$$
A_{1} X \ldots x A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i}, i=1 . . n\right\}
$$

