

Murat Osmanoglu

- A set is an unordered (well-defined) collection of objects.
- These objects are called elements (or members) of the set.
- $x \in A$, x is an element of the set A
- $x \notin A$, x is not an element of the set A

- Z = {2, -22, 12, 0, 43, -1287, ...}
 Z = {..., -3, -2, -1, 0, 1, 2, 3, ...}
- $A = \{x \in Z^+ | x < 10\}$ (set builder or common property) $B = \{x \in Z | x^2 < 10\}$
- Venn Diagram

• Two sets are equal if and only if they have same elements. A and B are equal if and only if $\forall x (x \in A \leftrightarrow x \in B)$.

 $A = \{x \in Z^+ | x < 6\}$ and $B = \{1, 2, 3, 4, 5\}$, A = B

- The universal set, denoted by U, contains all possible elements under the consideration
- The empty set, denoted by Ø, has no element

• A set A is a subset of a set B if and only if every element of A is also an element of B.

 $\mathbf{A} \subseteq \mathbf{B} \leftrightarrow \forall x [x \in A \to x \in B]$

$$A \not\subseteq B \leftrightarrow \neg \forall x [x \in A \to x \in B]$$

$$\leftrightarrow \exists x \sim [x \in A \to x \in B]$$

$$\leftrightarrow \exists x \sim [\sim x \in A \lor x \in B]$$
 (p \rightarrow q \equiv \np \vee q)

$$\leftrightarrow \exists x [x \in A \land \sim x \in B]$$

$$\leftrightarrow \exists x [x \in A \land x \notin B]$$

• A set A is a subset of a set B if and only if every element of A is also an element of B.

 $\mathbf{A} \subseteq \mathbf{B} \leftrightarrow \forall x [x \in A \to x \in B]$

- $\emptyset \subseteq A$ and $A \subseteq A$.
- A = B if and only if $A \subseteq B$ and $B \subseteq A$

bt A is

 $A = \{x | x = 4k + 1 \text{ for some } k \in Z\},\$ $B = \{x | x = 4k - 3 \text{ for some } k \in Z\}$ Show that whether the sets A and B are equal or not. (A \subseteq B) For any $x \in A$, x = 4k + 1 for some $k \in Z$ x = 4k + 1 + 3 - 3x = 4(k+1) - 3x = 4m - 3 for some $m \in Z$, so $x \in B$ (B \subseteq A) For any $x \in B$, x = 4k - 3 for some $k \in Z$ x = 4k - 3 + 1 - 1x = 4(k-1) + 1x = 4m + 1 for some $m \in Z$, so $x \in A$

Thus, A=B.

• A set A is a subset of a set B if and only if every element of A is also an element of B.

 $\mathbf{A} \subseteq \mathbf{B} \leftrightarrow \forall x [x \in A \to x \in B]$

- $\emptyset \subseteq A$ and $A \subseteq A$.
- A = B if and only if $A \subseteq B$ and $B \subseteq A$
- A set A is a proper subset of a set B if and only if $A \subseteq B$ and $A \neq B$

 $B = \{x \in Z^+ | x < 10\}$ and $A = \{1, 2, 3, 4, 5\}, A \subseteq B$

• The cardinality of a set A is defined as the size of A. It's denoted by IAI. (only for finite set)

For the set $A = \{x \in Z^+ | x < 10\}$, |A| = 9

• The power set of a given set is the set of all possible subsets. $S=\{1\} \qquad P(S)=\{\emptyset,\{1\}\} \qquad IP(S)I=2$

 $S=\{a, b\}$ $P(S)=\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ IP(S)I=4

• If |S|=n, then $|P(S)|=2^n$

Set Operations

• The union of A and B, denoted by $A \cup B$, contains elements that are either in A or B.

 $A \cup B = \{x \mid x \in A \lor x \in B\}$

• The intersection of A and B, denoted by $A \cap B$, contains elements that are in both A or B.

 $A \cap B = \{x \mid x \in A \land x \in B\}$

The sets A and B are called disjoint sets if $A \cap B = \emptyset$

• The difference of A and B, denoted by A-B, contains elements that are in A but not in B

$$A \cap B = \{ x \mid x \in A \land x \notin B \}$$

 The complement of A, denoted by A, contains elements that are in U but not in A.

 $\overline{\mathbf{A}} = \{ x \in U | x \notin A \}$

Set Operations

- $A \cup \emptyset = A$ $A \cap U = A$
- $A \cup U = U$ $A \cap \emptyset = \emptyset$
- AUA = A $A \cap A = A$
- $A \cup B = B \cup A$ $A \cap B = B \cap A$

- $AU(B\cap C) = (AUB)\cap(AUC)$ $A\cap(BUC) = (A\cap B)U(A\cap C)$
- $A \cap \overline{A} = \emptyset$ $A \cup \overline{A} = U$
- $\overline{(\overline{A})} = A$
- $\overline{\overline{(A \cup B)}} = \overline{A} \cap \overline{B}$ (De Morgan) $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$

 $|A \cup B| = |A| + |B| - |A \cap B|$

<u>Cartesian Products</u>

• The cartesian product of A and B, denoted by AxB, is the set of all pairs (x,y) where $x \in A$ and $y \in B$

$$A \times B = \{(x, y) | x \in A \land y \in B\}$$

• A={a,b}, B={1, 2, 3}

A×B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}

• The Cartesian products of the sets A_1, A_2, \ldots, A_n is the set of ordered n-tuples (a_1, a_2, \ldots, a_n) where $a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n$.

$$A_1 x \dots x A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i, i = 1 \dots n\}$$