COUNTING I

Murat Osmanoglu

Counting

'soup' AND 'sandwich'

- Ali and Buse eat lunch together in a specific restaurant regularly.
- restaurant has 9 choices for soup and 16 choices for sandwich
- How many different meals can Ali order?
- How many different meals can Buse order?

Counting

- Ali can order either one soup among 9 different soups or one sandwich among 16 different sandwiches.
- apply the Sum Rule here : $9+16=25$ different choices

Sum Rule

- If A and B are disjoint finite sets, then the number of ways of choosing a single element from A or B is

$$
|A \cup B|=|A|+|B|
$$

- If a task can be done in one of n_{1} ways or in one of n_{2} ways such that none from n_{1} ways is the same as any from n_{2} ways, then there are $n_{1}+n_{2}$ different ways to do the task
- If $A_{1}, A_{2}, \ldots, A_{n}$ are mutually disjoint sets $\left(A_{i} \cap A_{j}=\varnothing\right)$, then the number of ways of choosing a single element from A_{1} or A_{2} or ... A_{n} is

$$
\left|A_{1} \cup \ldots \cup A_{n}\right|=\left|A_{1}\right|+\ldots+\left|A_{n}\right|
$$

Counting

- Buse can choose one one soup among 9 different choices; and for each choice of soup, she can have one sandwich among 16 different sandwiches. consider the meal as a pair (soup, sandwich)
- apply the Product Rule here : $9.16=144$ different choices

Product Rule

- If A and B are finite sets, then the number of ways of choosing an element from A and an element from B is

$$
|A \times B|=|A| .|B|
$$

- Suppose that a task can be broken into a sequence of two small tasks. If there are n_{1} ways to do the first task, and for each one there are n_{2} ways to do the second task, then there are n_{1}, n_{2} different ways to finish the task
- If $A_{1}, A_{2}, \ldots, A_{n}$ are finite sets, then the number of ways of choosing an element from A_{1}, \ldots, an element from A_{n} is

$$
\left|A_{1} \times \ldots \times A_{n}\right|=\left|A_{1}\right| .\left|A_{2}\right| \ldots .\left|A_{n}\right|
$$

Counting

- How many bit-strings can you create with 3-digits?

$$
\begin{array}{r}
101,001,110, \ldots \\
2 \times 2 \times 2=8
\end{array}
$$

- What is the number of subsets of the set $\{a, b, c\}$?

$$
\begin{array}{r}
\{a, b, c\} \longrightarrow 111 \\
\{a, b\} \longrightarrow 110 \\
\{c\} \longrightarrow 001
\end{array}
$$

Counting

you pick one ball at a time How many 3-digits numbers can you create with the picked numbers?

- If you leave them to the bag after you pick

$$
5 \times 5 \times 5=125
$$

- If you keep them after you pick

$$
5 \times 4 \times 3=60
$$

Counting

In how many different ways can you go from the city A to the city B ?

$$
9+11+10=30
$$

In how many different ways can you go to B and come back to A ?

$$
30 \times 30=900
$$

Counting

- You prepare a meal for your friends
- There are 5 kinds of bagels, 7 kinds of sandwiches, 6 drinks (hot coffee, hot tea, iced tea, cola, orange juice, apple juice)
- Bagels served with hot drinks and sandwiches served with cold drinks

How many different meals can you prepare?

> (bagel, hot) or (sand, cold)

$$
5 \times 2+7 \times 4=38
$$

Counting

- How many different licence plates can be created if a plate contains of 2 digits indicating the city the car registered followed by 3 uppercase Turkish letters followed by 3 digits?

Counting

In how many different ways can you go from the city A to the city C?

$$
4 \times 3+2=14
$$

In how many different ways can you go to C and come back to A ?

$$
14 \times 14=196
$$

In how many different ways can you go to C and come back to A so that you can use same route to come back?

$$
14 \times 13=182
$$

Permutation

Assume there are 10 students. We choose five of them, and make them sit together to get a picture

How many such arrangements can we make?

- assign them numbers $0,1,2,3,4,5,6,7,8,9$
- possible arrangements $13429,60938,19082, \ldots$

$$
10 \times 9 \times 8 \times 7 \times 6=30240
$$

How many different arrangements can we make for all students?

$$
10 \times 9 \times 8 \times 7 \times \ldots \times 1=3628800
$$

Permutation

Assume there are 10 students. We choose five of them, and make them sit together to get a picture

How many such arrangements can we make?

- assign them numbers $0,1,2,3,4,5,6,7,8,9$
- possible arrangements $13429,60938,19082, \ldots$

$$
10 \times 9 \times 8 \times 7 \times 6 \frac{\times 5 \times 4 \times 3 \times 2 \times 1}{\times 5 \times 4 \times 3 \times 2 \times 1}=\frac{10!}{5!}
$$

- the number of different permutation of size 5 for 10 objects
- the number of different permutation of size r for n objects

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

Permutation

- Using the letters of the word 'COMPUTER' how many different words can you create?

$$
8!
$$

- Using the letters of the word 'COMPUTER', how many different words of length 5 can you create?

$$
P(8,5)=8!/ 5!=336
$$

- If repetitions are allowed, how many different words of length 5 can you create?

$$
8 \times 8 \times 8 \times 8 \times 8=32768
$$

Permutation

- Using the letters of the word 'BALL', how many different words can you create?

4! 12

BALL, BLAL, BLLA, ABLL, ALBL, ALLB LBAL, LBLA, LABL, LALB, LLAB, LLBA

- Using the letters of the word 'ABARA', how many different words can you create?
$\mathrm{A}_{1} \mathrm{BA}_{3} \mathrm{RA}_{2} \quad \mathrm{~A}_{2} \mathrm{BA}_{3} \mathrm{RA}_{1} \quad \mathrm{~A}_{3} \mathrm{BA}_{2} \mathrm{RA}_{1}$ $\mathrm{A}_{1} \mathrm{BA}_{2} \mathrm{RA}_{3} \quad \mathrm{~A}_{2} \mathrm{BA}_{1} \mathrm{RA}_{3} \quad \mathrm{~A}_{3} \mathrm{BA}_{1} \mathrm{RA}_{2}$
$5!/ 3!=20$
- pretend they are different A's
- fix other letters and reorder A's

Permutation

- There are 5 people: A, B, C, D, E
- They sit around a round table. How many different arrangements are possible?

$5 \times$ (\# of circular) $=(\#$ of linear $)$
(\# of circular) $=5!/ 5=24$

For each circular arrangement, there are 5 linear arrangements

Permutation

- There are 5 people : A, B, C, D, E
- They sit around a round table. How many different arrangements are possible?

- fix one of them
- permute all others as in linear
- 4!

Permutation

- You invite 2 couples for the dinner (3 couples at total)
- You have a around table. How many circular arrangements can you make such that no two women or no two men sit together?

- $3 \times 2 \times 2 \times 1 \times 1=12$
- $3!\times 2!=12$

Combinations

- Assume you play a game such that a player holds 3 cards.
- How many different hands can you create?

$$
P(52,3)=52!/(52-3)!
$$

you count them as one

52! / [(52-3)! . 3!]

Combinations

The number of different selections of r elements out of n distinct objects:

$$
C(n, r)=n!/[(n-r)!\cdot r!]
$$

There are 10 questions for an exam, and the student are required to choose 7 of them to answer.

- How many different answer sheets can a student prepare?

$$
10!/(7!.3!)=(10.9 .8) / 3!=120
$$

- If the student picks 4 questions from the first 5 and 3 quesitions from the last 5 , how many different answer sheets can he prepare?

$($,

$$
\binom{5}{4} \times\binom{ 5}{3}=\frac{5!}{1!.4!} \times \frac{5!}{2!.3!}=50
$$

Combinations

The number of different selections of r elements out of n distinct objects:

$$
C(n, r)=n!/[(n-r)!\cdot r!]
$$

There are 10 questions for an exam, and the student are required to choose 7 of them to answer.

- How many different answer sheets can a student prepare?

$$
10!/(7!.3!)=(10.9 .8) / 3!=120
$$

- If the student is required to pick at least 3 questions from the first 5 , how many different answer sheets can he prepare?

$$
\binom{5}{3}\binom{5}{4}+\binom{5}{4}\binom{5}{3}+\binom{5}{5}\binom{5}{2}
$$

Combinations

- We are forming soccer teams with 6 players for a tournament from 30 boys and 25 girls. How many different 4 teams (2 for girls and 2 for boys) can you create?

$$
\binom{30}{6}\binom{24}{6}\binom{25}{6}\binom{19}{6}
$$

- Suppose you are playing a game with five cards.

How many different hands can you have? $\binom{52}{5}$
How many of them contains no club? $\binom{39}{5}$
How many of them contains at least two clubs?

$$
\binom{13}{2} \cdot\binom{13}{3}+\binom{13}{3} \cdot\binom{13}{2}+\binom{13}{4} \cdot\binom{13}{1}+\binom{13}{5} \cdot\binom{13}{0}
$$

Combinations

$\Sigma=\{0,1\}$.
Let's use this alphabet to create three digits encoding:

$$
000,010,111,011, \ldots
$$

- How many encodings of length 8 can you create using the alphabet \sum ?

$$
2 \times 2 \times \ldots \times 2=2^{8}
$$

- How many of them contains exactly three 1's?

$$
\begin{gathered}
\binom{8}{3} \\
-\frac{1}{-}-\frac{1}{1}-\frac{1}{-}-1-1-1
\end{gathered}
$$

Combinations

$\Sigma=\{0,1\}$.
Let's use this alphabet to create three digits encoding:

$$
000,010,111,011, \ldots
$$

- How many encodings of length 8 can you create using the alphabet \sum ?

$$
2 \times 2 \times \ldots \times 2=2^{8}
$$

- How many of them contains exactly three 1's?

$$
\binom{8}{3}
$$

Assume $x=x_{1} x_{2} \ldots x_{n}$, the weight of a given encoding is

$$
w(x)=x_{1}+x_{2}+\ldots+x_{n}
$$

- How many encodings of length n have even weight?

$$
\binom{8}{0}+\binom{8}{2}+\ldots+\binom{8}{8}
$$

Combinations

$\Sigma=\{0,1,2\}$.
Let's use this alphabet to create three digits encoding:

$$
020,010,112,211, \ldots
$$

- How many encodings of length 8 can you create using the alphabet \sum ?

$$
3 \times 3 \times \ldots \times 3=3^{8}
$$

- How many of them contains exactly three 1's?

$$
\binom{8}{3} \cdot 2^{8-3}
$$

Assume $x=x_{1} x_{2} \ldots x_{n}$, the weight of a given encoding is

$$
w(x)=x_{1}+x_{2}+\ldots+x_{n}
$$

- How many encodings of length 8 have even weight?

$$
\binom{8}{0} 2^{8}+\ldots+\binom{8}{8} 2^{0}
$$

Binomial Theorem

- $(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$

$$
(x+y)^{4}=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}
$$

Let x and y be variables and n be non-negative integer, then

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\ldots+\binom{n}{n} y^{n}
$$

- What is the coefficient of $x^{5} y^{2}$ in the expansion of $(x+y)^{7}$?

$$
\binom{n}{i} x^{n-i} y^{i} \Rightarrow \mathrm{n}=7 \text { and } i=2 \Rightarrow\binom{7}{2} x^{5} y^{2}=\frac{7.6}{2} x^{5} y^{2}=21 x^{5} y^{2}
$$

- What is the coefficient of $x^{12} y^{15}$ in the expansion of $(2 x-3 y)^{25}$?

$$
\begin{aligned}
\binom{n}{i} x^{n-i} y^{i} \Rightarrow \mathrm{n}=25 \text { and } i=15 & \Rightarrow\binom{25}{15}(2 x)^{10}(-3 y)^{15} \\
& \Rightarrow\binom{25}{15} 2^{10}(-3)^{15} x^{10} y^{15}
\end{aligned}
$$

Binomial Theorem

Let x and y be variables and n be non-negative integer, then

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\ldots+\binom{n}{n} y^{n}
$$

- What is the coefficient of $x_{1}{ }^{n_{1}} x_{2}{ }^{n_{2}} \ldots x_{k}{ }^{n_{k}}$ in the expansion of $\left(x_{1}+x_{2}+\cdots+x_{k}\right)^{n}$?

$$
\binom{n}{n_{1}} \cdot\binom{n-n_{1}}{n_{2}} \cdot\binom{n-n_{1}-n_{2}}{n_{3}} \ldots\binom{n-n_{1}-\cdots-n_{k-1}}{n_{k}}=\frac{n!}{n_{1}!\ldots n_{k}!}
$$

- What is the coefficient of $x^{3} y^{2} z^{2}$ in the expansion of $(x+y+z)^{7}$?

$$
\frac{7!}{3!2!2!}=210
$$

Binomial Theorem

- Prove that $\sum_{i=0}^{n}\binom{n}{i}=2^{n}$

Suppose there is a set $A=\{1,2, \ldots, n\}$. Let's write the elements of the power set $P(A)$:
$\varnothing \quad\binom{n}{0}$
$\{1\},\{2\},\{3\}, \ldots,\{n\} \quad\binom{n}{1}$
$\{1,2\},\{1,3\},\{1,4\}, \ldots,\{n-1, n\} \quad\binom{n}{2}$
$\{1,2,3\},\{1,2,4\}, \ldots,\{n-2, n-1, n\} \quad\binom{n}{3}$
$\{1,2, \ldots, n\} \quad\binom{n}{n}$

$$
|\mathbb{P}(A)|=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n}=2^{n}
$$

Binomial Theorem

- Prove that $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0$ where n is odd integer.

$$
\begin{aligned}
& =(-1)^{0}\binom{n}{0}+(-1)^{1}\binom{n}{1}+(-1)^{2}\binom{n}{2}+(-1)^{3}\binom{n}{3}+\ldots+(-1)^{n}\binom{n}{n} \\
& =\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\ldots+\binom{n}{n-1}-\binom{n}{n} \\
& =\binom{n}{0}-\binom{n}{n}+\binom{n}{2}-\binom{n}{n-2}+\ldots+\binom{n}{n-1}-\binom{n}{1}=0
\end{aligned}
$$

- $\binom{n}{k}=\frac{n!}{(n-k)!k!} \quad$ and $\binom{n}{n-k}=\frac{n!}{k!(n-k)!}$

Thus, $\binom{n}{k}=\binom{n}{n-k}$

Binomial Theorem

- $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$
\{......\}
create subsets of A with k elements

There is a set A such that $|A|=n+1$ Assume one of them is a

$$
A=\{\ldots, a, \ldots\}
$$

Binomial Theorem

$$
\text { - }\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

Prove that $\sum_{k=1}^{n}\binom{k}{1}=\binom{n+1}{2}$

$$
=\binom{2}{2}+\binom{2}{1}+\binom{3}{1}+\ldots+\binom{n-1}{1}+\binom{n}{1}
$$

$\binom{1}{1}=\binom{2}{2}$

Binomial Theorem

- $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$

Prove that $\sum_{k=1}^{n}\binom{k}{1}=\binom{n+1}{2}$

$$
\begin{aligned}
& =\binom{2}{2}+\binom{2}{1}+\binom{3}{1}+\ldots+\binom{n-1}{1}+\binom{n}{1} \\
& =\binom{3}{2}+\binom{3}{1}+\ldots+\binom{n-1}{1}+\binom{n}{1} \\
& =\binom{4}{2}+\ldots+\binom{n-1}{1}+\binom{n}{1} \\
& =\binom{n}{2}+\binom{n}{1}=\binom{n+1}{2}
\end{aligned}
$$

