Relations

Murat Osmanoglu

Relations

- For a cartesian product set $A \times B=\{(x, y) \mid x \in A \wedge y \in B\}$, a binary relation from A to B is a subset of $A \times B$, i.e. $R \subseteq A \times B$
- if $(\mathrm{a}, \mathrm{b}) \in R$, then a is said to be related to b by R , i.e $\mathrm{a} R b$
- Let A be the set of students and B be the set of courses
$A=\{$ Ahmet, Efe, Buse, Pelin, . . . $\}$
$B=\{$ Math, Physics, Discrete, Algorithms, . . .\}
Let R be the relation such that if student a is taking course b, $(\mathrm{a}, \mathrm{b}) \in R$.
(Ahmet, Physics) $\in R$, (Efe, Discrete) $\notin R$

Relations

R	1	2
a	1	0
b	0	1
c	0	1

$$
R=\{(a, 1),(b, 2),(c, 2)\}
$$

- the number of relations that can be defined from A to B :

$$
2^{|A||B|}
$$

Relations

- A relation can be defined on a single set A as a subset of $A \times A$

$$
A=\{1,2,3\}
$$

$$
R=\{(1,1),(1,2),(2,2),(3,2)\}
$$

Functions as Relations

$$
R \subseteq A \times B
$$

$\mathrm{R}(\mathrm{A})$: the image of $\mathrm{R}, R(A)=\{y \in B \mid(x, y) \in R, \exists x \in A\}$
Function is a relation that satisfies two conditions:

- for every element x of the domain, there is an element y in the range such that (x, y) is an element of the relation Let $R \subseteq A \times B$ be the relation, $\forall x[(x \in A) \rightarrow(\exists y \in B$ s.t. $(x, y) \in R)]$
- for every element x of the domain, there is only one element y of the range such that (x, y) is an element of the relation Let $R \subseteq A \times B$ be the relation, $\forall x\left[\left(\left(x, y_{1}\right) \in R \wedge\left(x, y_{2}\right) \in R\right) \rightarrow\left(y_{1}=y_{2}\right)\right]$

Properties

Reflexivity

- A relation on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$

$$
R_{1}=\{(1,1),(1,2),(2,2),(3,2),(3,3)\}
$$

R_{2}	1	2	3
1	1	0	0
2	0	1	0
3	0	1	1

Properties

Symmetry

- A relation on a set A is called symmetric if $(a, b) \in R$, then $(b, a) \in R$
- If the relation is not symmetric, it is called asymmetric.
- If for all $(a, b) \in R,(b, a) \notin R$ or $a=b$, then it is called antisymmetric

Properties

Transitivity

- A relation on a set \mathbf{A} is called symmetric if $(a, b) \in R \wedge(b, c) \in R$, then $(a, c) \in R$

$$
R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,2),(3,1)\}
$$

Properties

Let R be a relation on Z such that $(a, b) \in R$ if $a . b \geq 0$

- Since a. $a \geq 0$ for all $a \in Z,(a, a) \in R$ for all $a \in Z$. Thus, R is reflexive.
- $[(a, b) \in R] \rightarrow(a \cdot b \geq 0) \rightarrow(b \cdot a \geq 0)$
$\rightarrow R$ is symmetric
- $[(a, b) \in R \wedge(b, c) \in R] \rightarrow[(a . b \geq 0) \wedge(b . c \geq 0)]$

$$
\rightarrow(a . b . b . c \geq 0)
$$

$$
\rightarrow(a . c \geq 0)
$$

$\rightarrow(a, c) \in R$
$\rightarrow R$ is transitive

Properties

Consider the division operator, ' \mid ', as a relation on integers:

$$
\left.(a, b) \in \in^{\prime}\right|^{\prime} \rightarrow a \mid b
$$

- Since $a \mid a,(a, a) \in$ ' \mid ' for all $a \in Z$. Thus, ' \mid ' is reflexive.
- $\left[\left.(a, b) \in{ }^{\prime}\right|^{\prime}\right] \rightarrow(a \mid b) \rightarrow$ (either $a=b$ or $\left.\mathrm{b} \nmid a\right)$
\rightarrow '|' is antisymmetric
- $\left[\left.\left.(a, b) \in^{\prime}\right|^{\prime} \wedge(b, c) \in \in^{\prime}\right|^{\prime}\right] \rightarrow[(a \mid b) \wedge(b \mid c)]$

$$
\begin{aligned}
& \rightarrow[b=x \cdot a \wedge c=y \cdot b, \exists x, y \in Z] \\
& \rightarrow(c=x \cdot y \cdot a) \\
& \rightarrow a\left|c \rightarrow(a, c) \in^{\prime}\right|^{\prime} \\
& \left.\rightarrow\right|^{\prime} \text { is transitive }
\end{aligned}
$$

Properties

How many reflexive relations can be defined on a set A of n elements?

- $A=\{1,2, \ldots, n\}$
- there are $|A x A|=n^{2}$ pairs
- a reflexive relation must contain the pairs $(1,1), \ldots,(n, n)$
- take these pairs out, $\left(n^{2}-n\right)$ remaining pairs
- $2^{\left(n^{2}-n\right)}$ different relations can be formed with the $\left(n^{2}-n\right)$ remaining pairs
- add each of them the pairs $(1,1), \ldots,(n, n)$ to make them reflexive

Properties

How many symmetric relations can be defined on a set A of n elements?

- $A=\{1,2, \ldots, n\}$
- there are $|A \times A|=n^{2}$ pairs

$$
\left.\begin{array}{rl}
A_{1}=\left\{\left(a_{i}, a_{i}\right) \mid 1 \leq i \leq n\right\} & \begin{array}{l}
A_{2}=\left\{\left(a_{i}, a_{j}\right) \mid 1 \leq i, j \leq n \text { and } i \neq j\right\} \\
\left|A_{2}\right|=
\end{array} \\
A_{1} \mid=n
\end{array}\right\} \begin{aligned}
& n^{2}-n \\
& A_{3}=\left\{\left(a_{i}, a_{j}\right) \mid 1 \leq i, j \leq n,\right. \\
& \left.i \neq j, \text { and }\left(a_{j}, a_{i}\right) \in A_{3}\right\} \\
& \left|A_{3}\right|=\left(n^{2}-n\right) / 2
\end{aligned}
$$

$$
\left(2^{n} \cdot 2^{\frac{n^{2}-n}{2}}\right)=2^{\left(n^{2}+n\right) / 2}
$$

operations

Union : Given $R, S \subseteq A \times B$,

$$
\mathrm{T}=R \cup S=\{(x, y) \mid(x, y) \in R \vee(x, y) \in S\}
$$

Intersection : Given $R, S \subseteq A \times B$,

$$
\mathrm{T}=R \cap S=\{(x, y) \mid(x, y) \in R \wedge(x, y) \in S\}
$$

Complement : Given $R \subseteq A \times B$,

$$
\mathrm{T}=\bar{R}=\{(x, y) \mid(x, y) \notin R\}
$$

Inverse : Given $R \subseteq A \times B$,

$$
\mathrm{T}=R^{-1}=\{(y, x) \in B \times A \mid(x, y) \in R\}
$$

Composition : Given $R \subseteq A \times B$ and $\mathrm{S} \subseteq B \times C$

$$
\mathrm{T}=S \circ R=\{(x, z) \mid(x, y) \in R \wedge(y, z) \in S\}
$$

Operations

R	1	2
a	1	0
b	0	1
c	1	0

$S \circ R$	u	v
a	0	0
b	1	1
c	0	0

S	\mathbf{u}	v
1	0	0
2	1	1

Operations

- $A=\{1,2,3\}, R=\{(1,1),(2,1),(3,2)\}$

R	1	2	3	R	1	2	3	$R \circ R$	1	2	3	
1	1	0	0		1	1	0	0		1	1	0

- $R^{2}=R \circ R=\{(1,1),(2,1),(3,2)\}$
$R^{3}=R^{2} \circ R=\{(1,1),(2,1),(3,2)\}$
- The relation R on a set A is transitive if and only if $R^{n} \subseteq R$ for some $n \in Z^{+}$

Equivalence Relations

Definition: A relation R on a set A is called an equivalence relation if it's reflexive, symmetric, and transitive. If $(a, b) \in R$, then a and b are called equivalent, i.e. $a \sim b$.

- Let R be a relation defined on real numbers such that $(a, b) \in R$ if and only if $a-b$ is an integer. R is an equivalence relation?
- $\forall a \in \mathbb{R}$, since $a-a=0 \in \mathbb{Z},(a, a) \in R$ (reflexive)
- $[(a, b) \in R] \rightarrow[a-b \in \mathbb{Z}]$

$$
\rightarrow[b-a \in \mathbb{Z}] \rightarrow[(b, a) \in R] \text { (symmetric) }
$$

- $[(a, b) \in R \wedge(b, c) \in R] \rightarrow[a-b \in \mathbb{Z} \wedge b-c \in \mathbb{Z}]$ $\rightarrow[a-c \in \mathbb{Z}] \rightarrow[(a, c) \in R]$ (transitive)

Equivalence Relations

Definition: A relation R on a set A is called an equivalence relation if it's reflexive, symmetric, and transitive. If $(a, b) \in R$, then a and b are called equivalent, i.e. $a \sim b$.

- Let R be a relation defined on integers such that $(a, b) \in R$ if and only if $a \equiv b(\bmod m)$. R is an equivalence relation?
- $\forall a \in \mathbb{Z}$, since $a \equiv a(\bmod m),(a, a) \in R$ (reflexive)
- $[(a, b) \in R] \rightarrow[a \equiv b(\bmod m)]$

$$
\rightarrow[b \equiv a(\bmod m)] \rightarrow[(b, a) \in R] \text { (symmetric) }
$$

- $[(a, b) \in R \wedge(b, c) \in R] \rightarrow[a \equiv b(\bmod m) \wedge b \equiv c(\bmod m)$.

$$
\rightarrow[a \equiv c(\bmod m)] \rightarrow[(a, c) \in R]
$$

(transitive)

Equivalence Relations

Definition: A relation R on a set A is called an equivalence relation if it's reflexive, symmetric, and transitive. If $(a, b) \in R$, then a and b are called equivalent, i.e. $a \sim b$.

- Let R be a relation defined on real numbers such that $(a, b) \in R$ if and only if $|a-b|<1 . \mathrm{R}$ is an equivalence relation?
- $\forall a \in \mathbb{Z}$, since $|a-a|=0<1,(a, a) \in R$ (reflexive)
- $[(a, b) \in R] \rightarrow[|a-b|<1]$

$$
\rightarrow[|b-a|<1] \rightarrow[(b, a) \in R] \text { (symmetric) }
$$

- $[(a, b) \in R \wedge(b, c) \in R] \rightarrow[|a-b|<1 \wedge|b-c|<1]$
for $a=1, b=\frac{1}{10}$, and $c=-\frac{2}{10}$
$|a-b|<1$ and $|b-c|<1$, but $|a-c|>1$ (not transitive)

Equivalence Relations

Definition : Let R be an equivalence relation on a set A. The set of all elements related to an element a is called the equivalence class of a, denoted by $[a]_{R}$

$$
[a]_{R}=\{s \in A \mid(a, s) \in R\}
$$

- What are the equivalence classes of 2 and 1 for the congruence relation of module 5?
$-(2, s) \in R \rightarrow 2 \equiv s(\bmod 5) \rightarrow 5 \mid(2-a)$
$-[2]_{R}=\{\ldots,-3,2,7,12, \ldots\}$
$-[1]_{R}=\{\ldots,-4,1,6,11, \ldots\}$

Equivalence Relations

- Let R_{n} be a relation on the set of strings built with $\{0,1\}$. For any two strings s and t, $(s, t) \in R_{n} \quad$ if $\quad s=\dagger$, or $l(s), l(t) \geq n$ and $s[1 . . n]=t[1 . . n]$

length of s
first n bits of s
- $(01,01) \in R_{3},(11,10) \notin R_{3}$
$(101,101) \in R_{3},(101,110) \notin R_{3}$
$(0111,0110) \in R_{3},(1101,1011) \notin R_{3}$
$(01001,010111000) \in R_{3},(1100,10011111) \notin R_{3}$

Equivalence Relations

- Let R_{n} be a relation on the set of strings built with $\{0,1\}$.

For any two strings s and t,
$(s, t) \in R_{n} \quad$ if $\quad s=t$,

$$
\text { or } l(s), l(t) \geq n \text { and } s[1 . . n]=t[1 . . n]
$$

- for all $a \in S$, since $a=a,(a, a) \in R_{3}$ (reflexive)
- if $(a, b) \in R_{3}$, either $a=b$ or a[1..3] $=b[1 . .3]$ thus $(b, a) \in R_{3}$
(symmetric)
- if $(a, b) \in R_{3} \wedge(b, c) \in R_{3}$,
either $a=b$ and $b=c$, then $a=c$ or $a=b$ and $b[1 . .3]=c[1 . .3]$, then $a[1 . .3]=c[1 . .3]$ or $a[1 . .3]=b[1 . .3]$ and $b=c$, then $a[1 . .3]=c[1 . .3]$ or $a[1 . .3]=b[1 . .3]$ and $b[1 . .3]=c[1 . .3]$, then $a[1 . .3]=c[1 . .3]$
(transitive)

Equivalence Relations

- Let R_{n} be a relation on the set of strings built with $\{0,1\}$. For any two strings s and t,
$(s, t) \in R_{n} \quad$ if $\quad s=t$, or $l(s), l(t) \geq n$ and $s[1 . . n]=t[1 . . n]$
- $[0]_{R_{3}}=\{0\},[1]_{R_{3}}=\{1\},[00]_{R_{3}}=\{00\},[01]_{R_{3}}=\{01\}$,
$[10]_{R_{3}}=\{10\},[11]_{R_{3}}=\{11\},[\varepsilon]_{R_{3}}=\{\varepsilon\}$
- $[000]_{R_{3}}=\{000,0000,0001,00000,00001, \ldots\}$
$[001]_{R_{3}}=\{001,0010,0011,00100,00101, \ldots\}$
$[111]_{R_{3}}=\{111,1110,1111,11100,11101, \ldots\}$
- $[\varepsilon]_{R_{3}} \cup[0]_{R_{3}} \cup \cdots \cup[111]_{R_{3}}=S$, the set of all strings

Equivalence Relations

- A given set S can be decomposed into disjoint subsets A_{i}. For a family of sets $A=\left\{A_{i} \mid i \in I\right\}$ such that $A_{i} \cap A_{j} \neq \emptyset$, a given set S can be written as

$$
S=A_{1} \cup \ldots \cup A_{n}
$$

$S=\{1,2,3,4,5,6\}$ can be written as $S=A_{1} \cup A_{2} \cup A_{3}$ where

$$
A_{1}=\{1,2,3\}, A_{1}=\{4,5\}, A_{1}=\{6\}
$$

- Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partititon of S.
If there is a partition of S, then there is an equivalence relation that has A_{i} as its equivalence classes.

$$
\begin{aligned}
R=\{ & (1,1),(2,2),(3,3),(1,2),(1,3),(2,1),(3,1), \\
& (4,4),(4,5),(5,4),(5,5), \\
& (6,6)\}
\end{aligned}
$$

Partial Order

Definition : A relation R on a set A is called a partial order if it's reflexive, antisymmetric, and transitive. A set S together with a partial order R is called partially ordered set or poset, (S, R)

- Consider 'greater than or equal' relation (\geq) defined on integers. (\geq) is a partial order ?
- $\forall a \in \mathbb{Z}$, since $a \geq a,(a, a) \in(\geq)$ (reflexive)
- $[(a, b) \in R] \rightarrow(a \geq b) \rightarrow(b \neq a$ if $a \neq b)$ (antisymmetric)
- $[(a, b) \in R \wedge(b, c) \in R] \rightarrow(a \geq b \wedge b \geq c)$

$$
\rightarrow(a \geq c) \rightarrow[(a, c) \in R] \text { (transitive) }
$$

Partial Order

Definition : A relation R on a set A is called a partial order if it's reflexive, antisymmetric, and transitive. A set S together with a partial order R is called partially ordered set or poset, (S, R)

- Consider a relation R on integers such that $(a, b) \in R$ if $\mathrm{a}-\mathrm{b}$ is a non-negative integer. R is a partial order ?
- $\forall a \in \mathbb{Z}$, since $a-a=0,(a, a) \in R$ (reflexive)
- $\quad[(a, b) \in R] \rightarrow(a-b$ is a non-negative integer $)$
$\rightarrow(b-a$ is a negative integer if $a \neq b$) (antisymmetric)
- $[(a, b) \in R \wedge(b, c) \in R] \rightarrow(a-b$ and $b-c$ are non-negative integer)
\rightarrow ($a-c$ is a non-negative integer)
$\rightarrow[(a, c) \in R]$ (transitive)

Partial Order

Definition : The elements a and b of a poset (S, R) are called comparable if either aRb or bRa.

- Consider the poset $\left(\mathbb{Z}^{+},\left.{ }^{\prime}\right|^{\prime}\right)$.
- Since 3|9, 3 and 9 are comparable.
- Since $7 \nmid 5$ or $5 \nmid 7,5$ and 7 are not comparable

Definition : If every pair of elements in S are comparable, then R is called total order. (S, R) is called totally ordered set.

- the poset $\left(\mathbb{Z}^{+},\left.\right|^{\prime}\right)$ is not totally ordered set.
- the poset $\left(\mathbb{Z}^{+}, \leq\right)$is a totally ordered set.

Partial Order

Definition : Consider a poset (S, R). An element a is called maximal if there is no $b \in S$ such that $a \mathrm{Rb}$. An element a is called minimal if there is no $b \in S$ such that bRa.

- Consider the poset $\left(S,{ }^{\prime} \mid '\right)$ where $S=\{2,4,5,10,12,15,20,30\}$
- maximal elements of $\left(S,\left.{ }^{\prime}\right|^{\prime}\right)\{12,20,30\}$
- minimal elements of $\left(S,\left.{ }^{\prime}\right|^{\prime}\right)\{2,5\}$

Definition : An element a is called the greatest element if bRa for all $b \in S$. An element a is called the least element if $a R b$ for all $b \in S$.

- Consider the power set of a given set S.
- \varnothing is the least element of $(P(S), \subseteq)$ since $\varnothing \subseteq T$ for any $T \in P(S)$
- S is the greatest element of $(P(S), \subseteq)$ since $T \subseteq S$ for any $T \in P(S)$

Partial Order

- Let $A=\{0,1,2\}, B=A \times A, R$ be a relation defined on B such that

$$
\begin{array}{lll}
((a, b),(c, d)) \in R \quad \text { if } \quad \begin{array}{ll}
a<c & \text { or } \\
& a=c \quad \text { and } b \leq d
\end{array}
\end{array}
$$

- $((0,1),(1,0)) \in R$ since $a<c$
- $((0,1),(0,2)) \in R$ since $a=c$ and $b \leq d$
- R is partial order relation?
- for all $(a, b) \in B$, since $a=a$ and $b \leq b,((a, b),(a, b)) \in R$
- for all $((a, b),(c, d)) \in R$ such that $(a, b) \neq(c, d)$

$$
\begin{aligned}
& \text { either } a<c \text {, then }((c, d),(a, b)) \notin R \\
& \text { or } a=c \text { and } b<d \text {, then }((c, d),(a, b)) \notin R
\end{aligned}
$$

- for all $((a, b),(c, d)) \in R$ and $((c, d),(e, f)) \in R$, either $a<c$ and $\mathrm{c}<e$, then $a<e,((a, b),(e, f)) \in R$ or $a<c$, and $c=e$ and $d \leq f$, then $a<e,((a, b),(e, f)) \in R$ or $a=c$, and $c<e$, then $a<e,((a, b),(e, f)) \in R$ or $a=c$ and $b \leq d$, and $c=e$ and $d \leq f$, then $a=e$ and $b \leq f$,

$$
((a, b),(e, f)) \in R
$$

Partial Order

- Let $A=\{0,1,2\}, B=A \times A, R$ be a relation defined on B such that

$$
\begin{array}{lll}
((a, b),(c, d)) \in R \quad \text { if } \quad \begin{array}{ll}
a<c & \text { or } \\
& a=c \quad \text { and } b \leq d
\end{array}
\end{array}
$$

- $((0,1),(1,0)) \in R$ since $a<c$
- $((0,1),(0,2)) \in R$ since $a=c$ and $b \leq d$
- R is partial order relation?
- Is there a least element?
$(0,0)$
- Is there a greatest element ?

$$
(2,2)
$$

- Is it total order ?

$$
\text { for all } a, b \in B,(a, b) \in R \text { or }(b, a) \in R
$$

- How many elements are in R ?

$$
(0,0) R(0,1) R(0,2) R(1,0) R(1,1) R(1,2) R(2,0) R(2,1) R(2,2)
$$

Hasse Diagram

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3\}, \leq):(x, y) \in(\leq)$ if $x \leq y$
- consider the elements of the set as vertices
- if $(x, y) \in(\leq)$, draw a line from x to y

Hasse Diagram

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3,4,6\}, R):(x, y) \in R$ if x divides y

maximal elements

no greatest element

minimal elements
the least element

Hasse Diagram

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3\}, R):(X, Y) \in R$ if $X \subseteq Y$

Partial Order

Definition : Consider a poset (S, R). If there is an element $u \in S$ such that $a R u$ for all $a \in A$, then u is called an upper bound of A. If there is an element $v \in S$ such that $v R a$ for all $a \in A$, then v is called an lower bound of A.

- Consider the poset $\left(\mathbb{Z}^{+},\left.{ }^{\prime}\right|^{\prime}\right)$
- for the set $A=\{3,9,12\}$;
if $u|3, u| 9, u \mid 12$, then u is a lower bound : 1 and 3 if $3|v, 9| v, 12 \mid v$, then v is an upper bound : $36,72, \ldots$
- for the set $B=\{1,2,4,5,10\}$;
if $u|1, u| 2, u|4, u| 5, u \mid 10$, then u is a lower bound : 1 if $1|v, 2| v, 4|v, 5| v, 10 \mid v$, then v is an upper bound : 20, 40, ...

Partial Order

Definition : Consider a poset (S, R). If there is an element $u \in S$ such that $a R u$ for all $a \in A$, then u is called an upper bound of A. If there is an element $v \in S$ such that $v R a$ for all $a \in A$, then v is called an lower bound of A.

- Consider the poset $(P(S), \subseteq)$ where $S=\{1,2,3,4\}$
- for the set $A=\{\{1\},\{2\},\{1,2\}\}$;
if $U \subseteq\{1\}, U \subseteq\{2\}, U \subseteq\{1,2\}$, then U is a lower bound : \varnothing
if $\{1\} \subseteq V,\{2\} \subseteq V,\{1,2\} \subseteq V$, then V is an upper bound :
$\{1,2\},\{1,2,3\},\{1,2,4\},\{1,2,3,4\}$

Topological Sorting

Definition: Topological sorting of n elements from a poset (S, R) is $s_{1} s_{2} \ldots s_{n}$ such that there is no $\left(s_{i}, s_{j}\right) \in R$ where $j<i$

- Consider the poset $\left(S,{ }^{\prime} \mid\right.$ ') where $S=\{2,15,8,3,6,20\}$
$-2,3,6,8,15,20$
- $3,2,8,6,15,20$
$-3,2,6,8,20,15$
- $3,6,2,8,20,15$ is not, i.e. $(2,6) \in^{\prime} \mid$ ' since $2 \mid 6$, but 6 comes before 2 in the sorting.

Topological Sorting

Definition: Topological sorting of n elements from a poset (S, R) is $s_{1} s_{2} \ldots s_{n}$ such that there is no $\left(s_{i}, s_{j}\right) \in R$ where $j<i$

- Every finite nonempty poset (S, R) has at least one minimal element.
- Pick an element $a_{0} \in S$. If a_{0} is not minimal, then there should be an element $a_{1} \in S$ such that $a_{1} R a_{0}$.
- If a_{1} is not minimal, then there should be an element $a_{2} \in S$ such that $a_{2} R a_{1}$.
- Since there are only finite number of elements, there should be an element a_{n} that is minimal.

Topological Sorting

Definition: Topological sorting of n elements from a poset (S, R) is $s_{1} s_{2} \ldots s_{n}$ such that there is no $\left(s_{i}, s_{j}\right) \in R$ where $j<i$
input : a finite poset (S, R) output : topological sorting of elements in S
initialize an empty queue Q while $S \neq \varnothing$
$a=a$ minimal element of S
$S=S-\{a\}$ add a to Q
return Q

Topological Sorting

Definition: Topological sorting of n elements from a poset (S, R) is $s_{1} s_{2} \ldots s_{n}$ such that there is no $\left(s_{i}, s_{j}\right) \in R$ where $j<i$
input : a finite poset (S, R)
output : topological sorting of elements in S
initialize an empty queue Q while $S \neq \varnothing$
$a=a$ minimal element of S
$S=S-\{a\}$ add a to Q
return Q

Q:

Topological Sorting

Definition: Topological sorting of n elements from a poset (S, R) is $s_{1} s_{2} \ldots s_{n}$ such that there is no $\left(s_{i}, s_{j}\right) \in R$ where $j<i$
input : a finite poset (S, R) output : topological sorting of elements in S initialize an empty queue Q while $S \neq \varnothing$
$a=a$ minimal element of S
$S=S-\{a\}$ add a to Q
return Q

Topological Sorting

Definition: Topological sorting of n elements from a poset (S, R) is $s_{1} s_{2} \ldots s_{n}$ such that there is no $\left(s_{i}, s_{j}\right) \in R$ where $j<i$
input : a finite poset (S, R)
output : topological sorting of elements in S
initialize an empty queue Q
while $S \neq \varnothing$
$a=a$ minimal element of S
$S=S-\{a\}$ add a to Q
return Q

Topological Sorting

Definition: Topological sorting of n elements from a poset (S, R) is $s_{1} s_{2} \ldots s_{n}$ such that there is no $\left(s_{i}, s_{j}\right) \in R$ where $j<i$
input : a finite poset (S, R)
output : topological sorting of elements in S
initialize an empty queue Q
while $S \neq \varnothing$
$a=a$ minimal element of S
$S=S-\{a\}$ add a to Q
return Q

Topological Sorting

Definition: Topological sorting of n elements from a poset (S, R) is $s_{1} s_{2} \ldots s_{n}$ such that there is no $\left(s_{i}, s_{j}\right) \in R$ where $j<i$
input : a finite poset (S, R)
output : topological sorting of elements in S
initialize an empty queue Q
while $S \neq \varnothing$
$a=a$ minimal element of S
$S=S-\{a\}$ add a to Q
return Q

