Functions

Murat Osmanoglu

Functions as Relations

$\mathrm{R}(\mathrm{A})$: the image of $\mathrm{R}, R(A)=\{y \in B \mid(x, y) \in R, \exists x \in A\}$
Function is a relation that satisfies two conditions:

- for every element x of the domain, there is an element y in the range such that (x, y) is an element of the relation Let $R \subseteq A \times B$ be the relation, $\forall x[(x \in A) \rightarrow(\exists y \in B$ s.t. $(x, y) \in R)]$
- for every element x of the domain, there is only one element y of the range such that (x, y) is an element of the relation Let $R \subseteq A \times B$ be the relation, $\forall x\left[\left(\left(x, y_{1}\right) \in R \wedge\left(x, y_{2}\right) \in R\right) \rightarrow\left(y_{1}=y_{2}\right)\right]$

Definition

- f assigns every element of A to exactly one element of B

Definition

How many functions can be defined from a set A to a set B where $|A|=n$ and $|B|=m$?

- Assume $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{m}\right\}$

$$
\begin{gathered}
\text { f=\{(} \left.\left.\left.a_{1},\right)_{\uparrow}\right),\left(a_{2},{ }_{\uparrow}\right), \ldots,\left(a_{n},{ }_{\uparrow}\right)\right\} \\
m \quad m \\
m^{n}=|B|^{|A|} \text { functions be }\left(a_{1}, b_{1}\right) \text { and }\left(a_{1}, b_{3}\right)
\end{gathered}
$$

Definition

One-to-One

- Let $f: A \rightarrow B$. A function is called one-to-one (or injective) if and only if $f(a)=f(b)$ implies $a=b$.

$$
\begin{gathered}
\forall a \forall b[f(a)=f(b) \rightarrow a=b] \\
\text { or } \forall a \forall b[a \neq b \rightarrow f(a) \neq f(b)]
\end{gathered}
$$

Definition

One-to-One

- Let $f: A \rightarrow B$. A function is called one-to-one (or injective) if and only if $f(a)=f(b)$ implies $a=b$.
- Determine whether the function $f(x)=3 x+1(f: \mathbb{R} \rightarrow \mathbb{R})$ is a one-to-one function or not.

$$
\begin{aligned}
\forall x_{1}, x_{2} \in \mathbb{R}, f\left(x_{1}\right)=f\left(x_{2}\right) & \rightarrow 3 x_{1}+1=3 x_{2}+1 \\
& \rightarrow x_{1}=x_{2}
\end{aligned}
$$

- Determine whether the function $f(x)=x^{4}-x^{2}(f: \mathbb{R} \rightarrow \mathbb{R})$ is a one-to-one function or not.

$$
\forall x_{1}, x_{2} \in \mathbb{R}, x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

for $x_{1}=1$ and $x_{2}=-1, x_{1} \neq x_{2}$ but $f\left(x_{1}\right)=f\left(x_{2}\right)$

Definition

Onto

- Let $f: A \rightarrow B$. A function is called onto (or surjective) if $f(A)=B$, i.e. for all $b \in B$, there is at least one $a \in A$ such that $f(a)=b$

$$
\forall b \exists a[f(a)=b]
$$

Definition

Onto

- Let $f: A \rightarrow B$. A function is called onto (or surjective) if $f(A)=B$, i.e. for all $b \in B$, there is at least one $a \in A$ such that $f(a)=b$
- Determine whether the function $f(x)=3 x+1(f: \mathbb{Q} \rightarrow \mathbb{Q})$ is a onto function or not.

$$
\begin{aligned}
\forall b \in \mathbb{Q}, f(a)=b & \leftrightarrow 3 a+1=b \\
& \leftrightarrow a=\frac{b-1}{3}
\end{aligned}
$$

Since $a=\frac{b-1}{3} \in \mathbb{Q}, f$ is onto

- Determine whether the function $f(x)=3 x+1(f: \mathbb{Z} \rightarrow \mathbb{Z})$ is a onto function or not.
for $5 \in \mathbb{Z}$, there is no integer $x \in \mathbb{Z}$ such that $f(x)=5$.

Definition

Bijection

- If a function both one-to-one and onto, it is called bijection.
- the identity function $f(x)=x(f: A \rightarrow A)$ is a bijection

$$
\forall x_{1}, x_{2} \in A, f\left(x_{1}\right)=f\left(x_{2}\right) \rightarrow x_{1}=x_{2}
$$

$\forall a \in A, f(a)=\mathrm{a}$, the preimage of a is itself

Inverse

$$
\begin{gathered}
f: A \rightarrow B \\
f(a)=b \\
f^{-1}: B \rightarrow A \\
f^{-1}(b)=a
\end{gathered}
$$

$f(A) \neq B$

$$
f^{-1}(a)=x \text { and } f^{-1}(a)=y
$$

Inverse

$$
\begin{gathered}
f: A \rightarrow B \\
f(a)=b \\
f^{-1}: B \rightarrow A \\
f^{-1}(b)=a
\end{gathered}
$$

If f is a bijection, then f^{-1} can be defined, i.e. f is invertible

Inverse

- If a function both one-to-one and onto, it is called bijection. If f is a bijection, then f^{-1} can be defined, i.e. f is invertible
- $f: \mathbb{Z} \rightarrow \mathbb{Z}$, defined as $f(x)=x+1, f$ is invertible?

$$
\begin{aligned}
& \forall x_{1}, x_{2} \in \mathbb{Z}, f\left(x_{1}\right)=f\left(x_{2}\right)
\end{aligned} \quad \rightarrow x_{1}+1=x_{2}+1 . ~\left(\begin{array}{rl}
\\
& \rightarrow x_{1}=x_{2} \text { (one-to-one) } \\
\begin{array}{rl}
\forall y \in \mathbb{Z}, f(x)=y \leftrightarrow x+1=y \\
& \leftrightarrow x=y-1 \in \mathbb{Z} \text { (onto) }
\end{array} \\
f^{-1}(x)=x-1
\end{array}\right.
$$

Inverse

- If a function both one-to-one and onto, it is called bijection. If f is a bijection, then f^{-1} can be defined, i.e. f is invertible
- $f: \mathbb{Z} \rightarrow \mathbb{Z}$, defined as $f(x)=2 x+1, f$ is invertible ?

$$
\begin{aligned}
\forall x_{1}, x_{2} \in \mathbb{Z}, f\left(x_{1}\right)=f\left(x_{2}\right) & \rightarrow 2 x_{1}+1=2 x_{2}+1 \\
& \rightarrow x_{1}=x_{2} \text { (one-to-one) }
\end{aligned}
$$

$\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z} f(x)=y \leftrightarrow 2 x+1=y$

$$
\leftrightarrow x=\frac{y-1}{2}
$$

but for some $y \in \mathbb{Z}, x=\frac{y-1}{2} \notin \mathbb{Z}$ (not onto)

Inverse

- If a function both one-to-one and onto, it is called bijection. If f is a bijection, then f^{-1} can be defined, i.e. f is invertible
- $f: \mathbb{Z} \rightarrow \mathbb{N}$, defined as $f(x)=\left\{\begin{array}{ll}2 x-1 & \text { if } x>0 \\ -2 x & \text { if } x \leq 0\end{array}\right.$, f is invertible?

$$
\begin{aligned}
\forall x_{1}, x_{2} \in \mathbb{Z}, f\left(x_{1}\right)=f\left(x_{2}\right) & \rightarrow 2 x_{1}-1=2 x_{2}-1 \\
& \rightarrow x_{1}=x_{2} \\
\forall x_{1}, x_{2} \in \mathbb{Z}, f\left(x_{1}\right)=f\left(x_{2}\right) & \rightarrow-2 x_{1}=-2 x_{2} \\
& \rightarrow x_{1}=x_{2} \text { (one-to-one) }
\end{aligned}
$$

$\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z}$, if $\mathrm{y}=2 k, \exists k \in \mathbb{Z}$, then $f(x)=\mathrm{y} \leftrightarrow-2 x=y$

$$
\leftrightarrow x=-\frac{y}{2}=-k \in \mathbb{Z}
$$

$\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z}$, if $\mathrm{y}=2 k+1, \exists k \in \mathbb{Z}$,

$$
\begin{aligned}
& \text { then } \begin{aligned}
& f(x)=y \leftrightarrow 2 x-1=y \\
& \leftrightarrow x=\frac{y+1}{2}=k+1 \in \mathbb{Z} \\
& \text { (onto) }
\end{aligned}
\end{aligned}
$$

Composition

$$
\begin{aligned}
& g \circ f \\
& f: A \rightarrow B \text { and } g: B \rightarrow C \\
& g \circ f: A \rightarrow C
\end{aligned}
$$

$$
f(a)=b \text { and } g(b)=c
$$

$$
g \circ f(a)=g(f(a))=g(b)=c
$$

Composition

- $f, g: \mathbb{Z} \rightarrow \mathbb{Z}$,

$$
\begin{aligned}
& f(x)=3 x+1 \text { and } g(x)=2 x-1 \\
& g \circ f(x)=g(f(x))=g(3 x+1)=2(3 x+1)-1=6 x+1 \\
& f \circ g(x)=f(g(x))=f(2 x-1)=3(2 x-1)+1=6 x-2
\end{aligned}
$$

- $f: A \rightarrow B$

$$
\begin{aligned}
& f \circ f^{-1}(y)=f\left(f^{-1}(y)=f(x)=y, \quad f \circ f^{-1}=I_{B}\right. \\
& f^{-1} \circ f(x)=f^{-1}(f(x))=f^{-1}(y)=x, \quad f^{-1} \circ f=I_{A}
\end{aligned}
$$

- If f and g are one-to-one, then $f \circ g$ is also one-to-one.

$$
\begin{aligned}
\forall x_{1}, x_{2} \in A, f \circ g\left(x_{1}\right)=f \circ g\left(x_{2}\right) & \rightarrow f\left(g\left(x_{1}\right)\right)=f\left(g\left(x_{2}\right)\right) \\
& \rightarrow g\left(x_{1}\right)=g\left(x_{2}\right) \text { (} \mathrm{f} \text { is one-to-one) } \\
& \rightarrow x_{1}=x_{2} \text { (} g \text { is one-to-one } \text {) }
\end{aligned}
$$

Floor and Ceiling Functions

- floor function of a real number x : is the largest integer that is less than or equal to x, denoted by $\lfloor x\rfloor$.

$$
\begin{aligned}
& \lfloor 1 / 5\rfloor=0,\lfloor-1 / 5\rfloor=-1,\lfloor 3,56\rfloor=3,\lfloor-3,56\rfloor=-4 \\
& \lfloor x\rfloor=n \text { if } n \leq x<n+1 \quad \text { or } \quad\lfloor x\rfloor=n \text { if } x-1 \leq n<x
\end{aligned}
$$

- ceiling function of a real number x : is the smallest integer that is greater than or equal to x, denoted by $\lceil x\rceil$.

$$
\begin{aligned}
& \lceil 1 / 5\rceil=1,\lceil-1 / 5\rceil=0,\lceil 3,56\rceil=4,\lceil-3,56\rceil=-3 \\
& \lceil x\rceil=n \text { if } n-1<x \leq n \quad \text { or } \quad\lceil x\rceil=n \text { if } x \leq n<x+1
\end{aligned}
$$

Floor and Ceiling Functions

- show that if \mathbf{x} is a real number, then $\lfloor 2 x\rfloor=\lfloor x\rfloor+\lfloor x+1 / 2\rfloor$ assume $x=n+\varepsilon$ where n is integer and $0 \leq \varepsilon<1$

$$
\begin{aligned}
0 & \leq \varepsilon<\frac{1}{2} \\
\lfloor 2 n+2 \varepsilon\rfloor & =\lfloor n+\varepsilon\rfloor+\lfloor n+\varepsilon+1 / 2\rfloor \\
2 n & =n+n
\end{aligned}
$$

$$
\frac{1}{2} \leq \varepsilon<1
$$

$$
\lfloor 2 n+2 \varepsilon\rfloor=\lfloor n+\varepsilon\rfloor+\lfloor n+\varepsilon+1 / 2\rfloor
$$

$$
2 n+1=n+n+1
$$

- determine whether $\lceil x+y\rceil=\lceil x\rceil+\lceil y\rceil$ for all $x, y \in \mathbb{R}$. assume $0<x, y<\frac{1}{2}$, then $x+y<1$.

$$
\begin{aligned}
\lceil x+y\rceil & =\lceil x\rceil+\lceil y\rceil \\
1 & \neq 1+1
\end{aligned}
$$

Sequences

Definition: A sequence is a function from \mathbb{N} (or \mathbb{Z}^{+}) to a set S, denoted by $\left\{a_{n}\right\}$ where a_{n} is the general term of the sequence.

$$
\begin{array}{ll}
1,4,7,10,13, \ldots & \{3 n+1\} \\
0,1,3,7,15, \ldots & \left\{2^{n}-1\right\}
\end{array}
$$

- $a_{n}=\frac{1}{n} \quad a_{1}=1, a_{2}=\frac{1}{2}, a_{3}=\frac{1}{3}, \ldots$
- $a_{n}=\frac{1}{3^{n}+2} \quad a_{0}=\frac{1}{2}, a_{1}=\frac{1}{5}, a_{2}=\frac{1}{11}, \ldots$

Sequences

Geometric Sequence :

$$
\begin{aligned}
& a, a r, a r^{2}, \ldots, a r^{n}, \ldots \\
& a_{n}=(-1)^{n} \quad a_{n}=2.3^{n} \\
& 1,-1,1,-1, \ldots \\
& 2,2.3,2.9,2.27, \ldots \\
& a_{n}=3 .(1 / 2)^{n} \\
& 3,3 / 2,3 / 4,3 / 8, \ldots
\end{aligned}
$$

Sequences

Arithmetic Sequence:

$$
\begin{array}{ccc}
a_{n}=1+n & a_{n}=2-4 n & a_{n}=-1+8 n \\
1,2,3,4, \ldots & 2,-2,-6,-10, \ldots & -1,7,15,23, \ldots
\end{array}
$$

Summations

- $\sum_{i=m}^{n} a_{i}=a_{m}+a_{m+1}+\ldots+a_{n-1}+a_{n}$

$$
\sum_{i=0}^{\infty} a_{i}=a_{0}+a_{1}+\ldots+a_{n}+\ldots
$$

$$
\sum_{i=2}^{5}\left(i^{2}-1\right)=4-1+9-1+16-1+25-1=50
$$

- $S=\{2,3,4\}, \quad \sum_{x \in S} x^{3}=2^{3}+3^{3}+4^{3}=99$
- $\quad \sum c f(x)=c \sum f(x)$

$$
\sum(f(x)+g(x))=\sum f(x)+\sum g(x)
$$

$$
\sum_{i=m}^{n} f(i)=\sum_{i=m}^{k} f(i)+\sum_{i=k+1}^{n} f(i)
$$

- $\sum_{i=1}^{n} i=1+2+\ldots+\frac{n}{2}+\left(\frac{n}{2}+1\right)+\ldots+(n-1)+n$

$$
\begin{aligned}
& =(\mathrm{n}+1)+(\mathrm{n}+1)+\ldots+(\mathrm{n}+1) \\
& =\frac{n}{2}(\mathrm{n}+1)
\end{aligned}
$$

Sulninations

- $a, a+d, a+2 d, \ldots, a+n . d$

$$
\begin{aligned}
\sum_{i=0}^{n}(a+i d) & =\sum_{i=0}^{n} a+\sum_{i=0}^{n} i d \\
& =\sum_{i=0}^{n} a+d \sum_{i=0}^{n} i \\
& =(n+1) a+d \frac{n(n+1)}{2}
\end{aligned}
$$

- $a, a r, a r^{2}, \ldots, a r^{n}$

$$
\begin{aligned}
S_{n}=\sum_{i=0}^{n} a r^{i} \rightarrow & r S_{n}=r \sum_{i=0}^{n} a r^{i}=\sum_{i=0}^{n} a r^{i+1} \\
& r S_{n}=\sum_{i=1}^{n+1} a r^{i}=\sum_{i=1}^{n} a r^{i}+a r^{n+1} \\
& r S_{n}=\sum_{i=0}^{n} a r^{i}+a r^{n+1}-a \\
& r S_{n}=S_{n}+a r^{n+1}-a \rightarrow S_{n}=\frac{a r^{n+1}-a}{r-1}
\end{aligned}
$$

Recurrence Relations

- sometimes the elements of the sequence are defined recursively in terms of previous and the initial elements of the sequence

$$
\begin{aligned}
& a_{0}=1, a_{1}=5, a_{2}=13, a_{3}=29, a_{4}=? \\
& a_{1}=2 a_{0}+3=5 \\
& a_{2}=2 a_{1}+3=13 \\
& a_{3}=2 a_{2}+3=29 \\
& a_{4}=2 a_{3}+3=61
\end{aligned}
$$

Definition : an equation that express the general term of the sequence in terms of previous terms. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

Recurrence Relations

- $a_{n+1}=3 a_{n}, a_{0}=5$

$$
a_{1}=15=3.5
$$

$$
a_{2}=75=3
$$

$$
a_{3}=225=3
$$

$a_{n}=3^{n} 5$; the unique solution of the given recurrence relation

- $a_{n+1}=d . a_{n}, a_{0}=A$ where d is constant the solution of the recurrence relation will be $a_{n}=A . d^{n}$
- solve the recurrence relation $a_{n+1}=7 . a_{n}$ where $n \geq 1$ and $a_{2}=98$ $a_{2}=A .7^{2} \rightarrow 98=A .49 \rightarrow A=2$
the solution is $a_{n}=2.7^{n}$

Recurrence Relations

- 3 can be written as a sum of positive integers in 4 different ways:

$$
\begin{gathered}
3 \\
1+2 \\
2+1 \\
1+1+1
\end{gathered} \longleftarrow<\begin{gathered}
2 \\
1+1
\end{gathered}
$$

- In how many different ways can mbe written as a sum of positive integers?

$$
\begin{array}{cc}
4 & 3+1 \\
1+3 & 1+2+1 \\
2+2 & 2+1+1 \\
1+1+2 & 1+1+1+1
\end{array}
$$

- $a_{4}=2 . a_{3}, a_{3}=2 . a_{2}$, and $a_{2}=2$
$a_{n+1}=2 . a_{n}, a_{1}=1$
create a new sequence $b_{n}=a_{n+1}$
$b_{n}=2 b_{n-1}, b_{0}=1$; the solution will be $b_{n}=2^{n}$; thus $a_{n}=2^{n-1}$

Recurrence Relations

- 3 can be written as a sum of positive integers in 4 different ways:

$$
\begin{gathered}
3 \\
1+2 \\
2+1 \\
1+1+1
\end{gathered} \longleftarrow<\begin{gathered}
2 \\
1+1
\end{gathered}
$$

- In how many different ways can mbe written as a sum of positive integers?

$$
\begin{array}{cc}
4 & 3+1 \\
1+3 & 1+2+1 \\
2+2 & 2+1+1 \\
1+1+2 & 1+1+1+1
\end{array}
$$

- $a_{4}=2 . a_{3}, a_{3}=2 . a_{2}$, and $a_{2}=2$
$a_{n+1}=2 . a_{n}, a_{1}=1$
create a new sequence $b_{n}=$
first order linear homogeneous recurrence relation $b_{n}=2 b_{n-1}, b_{0}=1$; the solution will be $b_{n}=2^{n}$; thus $a_{n}=2^{n-1}$

Recurrence Relations

- $a_{n+1}-d . a_{n}=0, a_{0}=A$ where d is constant.
- first order since a_{n+1} only depends on a_{n} (the previous term)
- linear since each variable appears in the first power and there is no product such as $a_{n+1} \cdot a_{n}$
- homogeneous since the right hand side is 0
- The second order linear homogeneous recurrence relation :

$$
C_{0} a_{n+1}+C_{1} a_{n}+C_{2} a_{n-1}=0, a_{0}=A, a_{1}=B, n \geq 2
$$

- The Fibonacci sequence:

$$
F_{n+1}=F_{n}+F_{n-1}, \quad F_{0}=1, \quad F_{2}=1, \quad n \geq 2
$$

Recurrence Relations

- The second order linear homogeneous recurrence relation:

$$
C_{0} a_{n+1}+C_{1} a_{n}+C_{2} a_{n-1}=0, a_{0}=A, a_{1}=B, n \geq 2
$$

$a_{n+1}-d . a_{n}=0, a_{0}=A$. the solution was in the form of $a_{n}=A . d^{n}$

- Similarly, we look for a solution in the form of $a_{n}=c . r^{n}$ If we place it in the equation:

$$
\begin{aligned}
& C_{0} c . r^{n+1}+C_{1} c . r^{n}+C_{2} c . r^{n-1}=0 \\
& \quad C_{0} r^{2}+C_{1} r+C_{2}=0 \quad \text { (characteristic equation) }
\end{aligned}
$$

The solutions for the characteristic equation are called characteristic roots; r_{1} and r_{2}

Recurrence Relations

- $a_{n+1}+a_{n}-6 a_{n-1}=0, a_{0}=-1, a_{1}=8, n \geq 2$

$$
\begin{aligned}
& r^{2}+r-6=0 \text { (characteristic equation) } \\
& r_{1}=2, r_{2}=-3 \text { (characteristic roots) }
\end{aligned}
$$

the solution will be in the form of $a_{n}=c_{1} 2^{n}+c_{2}(-3)^{n}$.

$$
\begin{aligned}
& a_{0}=c_{1} 2^{0}+c_{2}(-3)^{0} \rightarrow-1=c_{1}+c_{2} \\
& a_{1}=c_{1} 2^{1}+c_{2}(-3)^{1} \rightarrow 8=2 c_{1}-3 c_{2}
\end{aligned}
$$

$$
\begin{array}{r}
c_{1}+c_{2}=-1 \\
2 c_{1}-3 c_{2}=8
\end{array} \longrightarrow \quad a_{n}=2^{n}-2 \cdot(-3)^{n}
$$

$$
c_{1}=1, c_{2}=-2
$$

Recurrence Relations

- Suppose we have a $2 x n$ chessboard and we wish to cover it using 2×1 and 1×2 dominoes. In how many different ways can we cover it?

Recurrence Relations

- Suppose we have a $2 x n$ chessboard and we wish to cover it using 2×1 and 1×2 dominoes. In how many different ways can we cover it?

Recurrence Relations

- Suppose we have a $2 \times n$ chessboard and we wish to cover it using 2×1 and 1×2 dominoes. In how many different ways can we cover it?
- $b_{n}=b_{n-1}+b_{n-2}, n \geq 3, b_{1}=1$ and $b_{2}=2$

$$
\begin{gathered}
r^{2}-r-1=0 \text { (characteristic equation) } \\
r_{1}=\frac{1+\sqrt{5}}{2}, r_{2}=\frac{1-\sqrt{5}}{2} \text { (characteristic roots) }
\end{gathered}
$$

the solution will be in the form of $b_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$
$b_{0}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{0}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{0} \rightarrow \quad 1=c_{1}+c_{2}$
$b_{1}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{1}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{1} \rightarrow \quad 2=\left(\frac{1+\sqrt{5}}{2}\right) c_{1}+\left(\frac{1-\sqrt{5}}{2}\right) c_{2}$
$c_{1}=1 / \sqrt{5}, c_{2}=-1 / \sqrt{5} \longrightarrow b_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)$

Recurrence Relations

- 3 can be written as a sum of positive integers in 4 different ways:

- How many different palindromes can be found for a given $n \in \mathbb{Z}^{+}$?

$$
\begin{aligned}
& b_{n}=2 b_{n-2}, n \geq 3, b_{1}=1 \text { and } b_{2}=2 \\
& \quad r^{2}-2=0 \quad \text { (characteristic equation) } \\
& r_{1}=\sqrt{2}, r_{2}=-\sqrt{2} \quad \text { (characteristic roots) }
\end{aligned}
$$

the solution will be in the form of $b_{n}=c_{1}(\sqrt{2})^{n}+c_{2}(-\sqrt{2})^{n}$

$$
\begin{gathered}
b_{0}=c_{1}(\sqrt{2})^{0}+c_{2}(-\sqrt{2})^{0} \rightarrow \quad 1=c_{1}+c_{2} \\
b_{1}=c_{1}(\sqrt{2})^{1}+c_{2}(-\sqrt{2})^{1} \rightarrow \quad 2=(\sqrt{2}) c_{1}+(-\sqrt{2}) c_{2} \\
b_{n}=\left(\frac{1}{2}+\frac{1}{2 \sqrt{2}}\right)(\sqrt{2})^{n}+\left(\frac{1}{2}-\frac{1}{2 \sqrt{2}}\right)(-\sqrt{2})^{n}
\end{gathered}
$$

