Functions

Murat Osmanoglu

Functions as Relations

R(A): the image of $R, R(A) = \{y \in B | (x, y) \in R, \exists x \in A\}$

Function is a relation that satisfies two conditions :

for every element x of the domain, there is an element y in the range such that (x,y) is an element of the relation

Let $R \subseteq A \times B$ be the relation, $\forall x[(x \in A) \rightarrow (\exists y \in B \ s.t.(x,y) \in R)]$

 for every element x of the domain, there is only one element y of the range such that (x,y) is an element of the relation

Let $R \subseteq A \times B$ be the relation, $\forall x[((x, y_1) \in R \land (x, y_2) \in R) \rightarrow (y_1 = y_2)]$

• f assigns every element of A to exactly one element of B

if
$$(a,b) \in f$$
, then $f(a) = b$
preimage image
of b of a

How many functions can be defined from a set A to a set B where IAI=n and IBI=m ?

• Assume $A = \{a_1, ..., a_n\}$ and $B = \{b_1, ..., b_m\}$

<u>One-to-One</u>

 Let f : A → B. A function is called one-to-one (or injective) if and only if f(a) = f(b) implies a = b.

 $\forall a \forall b [f(a) = f(b) \rightarrow a = b]$

or $\forall a \forall b [a \neq b \rightarrow f(a) \neq f(b)]$

<u>One-to-One</u>

- Let f : A → B. A function is called one-to-one (or injective) if and only if f(a) = f(b) implies a = b.
- Determine whether the function f(x) = 3x + 1 ($f: \mathbb{R} \to \mathbb{R}$) is a one-to-one function or not.

$$\forall x_1, x_2 \in \mathbb{R}, f(x_1) = f(x_2) \to 3x_1 + 1 = 3x_2 + 1$$

 $\to x_1 = x_2$

• Determine whether the function $f(x) = x^4 - x^2$ ($f: \mathbb{R} \to \mathbb{R}$) is a one-to-one function or not.

$$\forall x_1, x_2 \in \mathbb{R}, \ x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)$$

for $x_1 = 1$ and $x_2 = -1$, $x_1 \neq x_2$ but $f(x_1) = f(x_2)$

<u>Onto</u>

Let f : A → B. A function is called onto (or surjective) if f(A)=B,
 i.e. for all b ∈ B, there is at least one a ∈ A such that f(a) = b

 $\forall b \exists a [f(a) = b]$

<u>Definition</u>

<u>Onto</u>

S

- Let f : A → B. A function is called onto (or surjective) if f(A)=B,
 i.e. for all b ∈ B, there is at least one a ∈ A such that f(a) = b
- Determine whether the function f(x) = 3x + 1 ($f: \mathbb{Q} \to \mathbb{Q}$) is a onto function or not.

$$\forall b \in \mathbb{Q}, f(a) = b \leftrightarrow 3a + 1 = b$$
$$\leftrightarrow a = \frac{b-1}{3}$$
ince $a = \frac{b-1}{3} \in \mathbb{Q}$, f is onto

• Determine whether the function f(x) = 3x + 1 ($f: \mathbb{Z} \to \mathbb{Z}$) is a onto function or not.

for $5 \in \mathbb{Z}$, there is no integer $x \in \mathbb{Z}$ such that f(x) = 5.

<u>Bijection</u>

- If a function both one-to-one and onto, it is called bijection.
- the identity function f(x) = x ($f: A \rightarrow A$) is a bijection

$$\forall x_1, x_2 \in A, f(x_1) = f(x_2) \to x_1 = x_2$$

 $\forall a \in A, f(a) = a$, the preimage of a is itself

Inverse

- If a function both one-to-one and onto, it is called bijection. If f is a bijection, then f^{-1} can be defined, i.e. f is invertible
- $f: \mathbb{Z} \to \mathbb{Z}$, defined as f(x) = x + 1, f is invertible ?

$$\forall x_1, x_2 \in \mathbb{Z}, f(x_1) = f(x_2) \rightarrow x_1 + 1 = x_2 + 1$$

$$\rightarrow x_1 = x_2 \text{ (one-to-one)}$$

$$\forall y \in \mathbb{Z}, f(x) = y \leftrightarrow x + 1 = y$$

$$\leftrightarrow x = y - 1 \in \mathbb{Z} \text{ (onto)}$$

$$f^{-1}(x) = x - 1$$

Inverse

- If a function both one-to-one and onto, it is called bijection. If f is a bijection, then f^{-1} can be defined, i.e. f is invertible
- $f: \mathbb{Z} \to \mathbb{Z}$, defined as f(x) = 2x + 1, f is invertible ?

$$\forall x_1, x_2 \in \mathbb{Z}, f(x_1) = f(x_2) \rightarrow 2x_1 + 1 = 2x_2 + 1$$

 $\rightarrow x_1 = x_2 \text{ (one-to-one)}$

$$\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z} f(x) = y \leftrightarrow 2x + 1 = y$$
$$\leftrightarrow x = \frac{y - 1}{2}$$
but for some $y \in \mathbb{Z}, x = \frac{y - 1}{2} \notin \mathbb{Z}$ (not onto)

Inverse

• If a function both one-to-one and onto, it is called bijection. If f is a bijection, then f^{-1} can be defined, i.e. f is invertible

•
$$f: \mathbb{Z} \to \mathbb{N}$$
, defined as $f(x) = \begin{cases} 2x - 1 & \text{if } x > 0 \\ -2x & \text{if } x \le 0 \end{cases}$, f is invertible ?

$$\forall x_1, x_2 \in \mathbb{Z}, \ f(x_1) = f(x_2) \to 2x_1 - 1 = 2x_2 - 1 \to x_1 = x_2 \forall x_1, x_2 \in \mathbb{Z}, \ f(x_1) = f(x_2) \to -2x_1 = -2x_2 \to x_1 = x_2 \ (one-to-one)$$

 $\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z}, \text{ if } y = 2k, \exists k \in \mathbb{Z}, \text{ then } f(x) = y \leftrightarrow -2x = y$ $\leftrightarrow x = -\frac{y}{2} = -k \in \mathbb{Z}$

$$\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z}, \text{ if } y = 2k + 1, \exists k \in \mathbb{Z}, \\ \text{then } f(x) = y \leftrightarrow 2x - 1 = y \\ \leftrightarrow x = \frac{y+1}{2} = k + 1 \in \mathbb{Z} \\ \text{(onto)}$$

 $g \circ f$

$$f: A \to B \text{ and } g: B \to C$$

 $g \circ f: A \to C$

$$f(a) = b \text{ and } g(b) = c$$
$$g \circ f(a) = g(f(a)) = g(b) = c$$

Composition

• $f, g: \mathbb{Z} \to \mathbb{Z}$, f(x) = 3x + 1 and g(x) = 2x - 1 $g \circ f(x) = g(f(x)) = g(3x + 1) = 2(3x + 1) - 1 = 6x + 1$ $f \circ g(x) = f(g(x)) = f(2x - 1) = 3(2x - 1) + 1 = 6x - 2$

•
$$f: A \to B$$

 $f \circ f^{-1}(y) = f(f^{-1}(y) = f(x) = y, \quad f \circ f^{-1} = I_B$
 $f^{-1} \circ f(x) = f^{-1}(f(x)) = f^{-1}(y) = x, \quad f^{-1} \circ f = I_A$

• If f and g are one-to-one, then $f \circ g$ is also one-to-one.

$$\forall x_1, x_2 \in A, f \circ g(x_1) = f \circ g(x_2) \rightarrow f(g(x_1)) = f(g(x_2)) \rightarrow g(x_1) = g(x_2)$$
 (f is one-to-one)
 $\rightarrow x_1 = x_2$ (g is one-to-one)

Floor and Ceiling Functions

- floor function of a real number x : is the largest integer that is less than or equal to x, denoted by [x].
 - $\lfloor 1/5 \rfloor = 0, \lfloor -1/5 \rfloor = -1, \lfloor 3,56 \rfloor = 3, \lfloor -3,56 \rfloor = -4$ $\lfloor x \rfloor = n \text{ if } n \le x < n+1 \text{ or } \lfloor x \rfloor = n \text{ if } x-1 \le n < x$
- ceiling function of a real number x : is the smallest integer that is greater than or equal to x, denoted by [x].

[1/5] = 1, [-1/5] = 0, [3,56] = 4, [-3,56] = -3

[x] = n if $n - 1 < x \le n$ or [x] = n if $x \le n < x + 1$

Floor and Ceiling Functions

• show that if x is a real number, then $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor$

assume $x = n + \varepsilon$ where n is integer and $0 \le \varepsilon < 1$ $0 \le \varepsilon < \frac{1}{2}$ $[2n + 2\varepsilon] = [n + \varepsilon] + [n + \varepsilon + 1/2]$ 2n = n + n $[2n + 1] = [n + \varepsilon] + [n + \varepsilon + 1/2]$ $[2n + 2\varepsilon] = [n + \varepsilon] + [n + \varepsilon + 1/2]$ $[2n + 1] = [n + \varepsilon] + [n + \varepsilon + 1/2]$

• determine whether [x + y] = [x] + [y] for all $x, y \in \mathbb{R}$.

assume $0 < x, y < \frac{1}{2}$, then x + y < 1. [x + y] = [x] + [y] $1 \neq 1 + 1$

Definition: A sequence is a function from \mathbb{N} (or \mathbb{Z}^+) to a set S, denoted by $\{a_n\}$ where a_n is the general term of the sequence.

1, 4, 7, 10, 13, \ldots {3*n* + 1}

$$0, 1, 3, 7, 15, \ldots$$
 $\{2^n - 1\}$

•
$$a_n = \frac{1}{n}$$
 $a_1 = 1, \ a_2 = \frac{1}{2}, \ a_3 = \frac{1}{3}, \ldots$

•
$$a_n = \frac{1}{3^{n+2}}$$
 $a_0 = \frac{1}{2}, a_1 = \frac{1}{5}, a_2 = \frac{1}{11}, \dots$

Geometric Sequence :

$$a_n = (-1)^n$$
 $a_n = 2.3^n$ $a_n = 3.(1/2)^n$
1, -1, 1, -1, ... 2, 2.3, 2.9, 2.27, ... 3, 3/2, 3/4, 3/8, ...

Arithmetic Sequence :

$$a_n = 1 + n$$
 $a_n = 2 - 4n$ $a_n = -1 + 8n$
1, 2, 3, 4, ... 2, -2, -6, -10, ... -1, 7, 15, 23, ...

- $\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \dots + a_{n-1} + a_n$ $\sum_{i=0}^{\infty} a_i = a_0 + a_1 + \dots + a_n + \dots$ $\sum_{i=2}^{5} (i^2 - 1) = 4 - 1 + 9 - 1 + 16 - 1 + 25 - 1 = 50$
- $S = \{2, 3, 4\}, \quad \sum_{x \in S} x^3 = 2^3 + 3^3 + 4^3 = 99$
- $\sum cf(x) = c \sum f(x)$ $\sum (f(x) + g(x)) = \sum f(x) + \sum g(x)$ $\sum_{i=m}^{n} f(i) = \sum_{i=m}^{k} f(i) + \sum_{i=k+1}^{n} f(i)$

•
$$\sum_{i=1}^{n} i = 1 + 2 + \dots + \frac{n}{2} + \left(\frac{n}{2} + 1\right) + \dots + (n-1) + n$$

= $(n+1) + (n+1) + \dots + (n+1)$
= $\frac{n}{2}(n+1)$

<u>Summations</u>

- a, a + d, a + 2d, ..., a + n.d $\sum_{i=0}^{n} (a + id) = \sum_{i=0}^{n} a + \sum_{i=0}^{n} id$ $= \sum_{i=0}^{n} a + d \sum_{i=0}^{n} i$ $= (n + 1)a + d \frac{n(n+1)}{2}$
- $a, ar, ar^2, ..., ar^n$

$$\begin{split} S_n &= \sum_{i=0}^n ar^i \to rS_n = r \sum_{i=0}^n ar^i = \sum_{i=0}^n ar^{i+1} \\ rS_n &= \sum_{i=1}^{n+1} ar^i = \sum_{i=1}^n ar^i + ar^{n+1} \\ rS_n &= \sum_{i=0}^n ar^i + ar^{n+1} - a \\ rS_n &= S_n + ar^{n+1} - a \to S_n = \frac{ar^{n+1} - a}{r-1} \end{split}$$

 sometimes the elements of the sequence are defined recursively in terms of previous and the initial elements of the sequence

$$a_0 = 1, a_1 = 5, a_2 = 13, a_3 = 29, a_4 = ?$$

 $a_1 = 2a_0 + 3 = 5$
 $a_2 = 2a_1 + 3 = 13$
 $a_3 = 2a_2 + 3 = 29$
 $a_4 = 2a_3 + 3 = 61$

Definition : an equation that express the general term of the sequence in terms of previous terms. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

- $a_{n+1} = 3a_n$, $a_0 = 5$ $a_1 = 15 = 3.5$ $a_2 = 75 = 3.(3.5)$ $a_3 = 225 = 3.(3.(3.5))$ \vdots $a_n = 3^n 5$; the unique solution of the given recurrence relation
 - $a_{n+1} = d. a_n$, $a_0 = A$ where d is constant the solution of the recurrence relation will be $a_n = A. d^n$
 - solve the recurrence relation $a_{n+1} = 7. a_n$ where $n \ge 1$ and $a_2 = 98$ $a_2 = A.7^2 \rightarrow 98 = A.49 \rightarrow A = 2$ the solution is $a_n = 2.7^n$

• 3 can be written as a sum of positive integers in 4 different ways:

• In how many different ways can n be written as a sum of positive integers ?

4	3 + 1
1 + 3	1 + 2 + 1
2 + 2	2 + 1 + 1
1 + 1 + 2	1 + 1 + 1 + 1

• $a_4 = 2. a_3, a_3 = 2. a_2$, and $a_2 = 2$ $a_{n+1} = 2. a_n, a_1 = 1$ create a new sequence $b_n = a_{n+1}$ $b_n = 2b_{n-1}, b_0 = 1$; the solution will be $b_n = 2^n$; thus $a_n = 2^{n-1}$

• 3 can be written as a sum of positive integers in 4 different ways:

• In how many different ways can n be written as a sum of positive integers ?

3 + 1
1 + 2 + 1
2 + 1 + 1
1 + 1 + 1 + 1

• $a_4 = 2. a_3, a_3 = 2. a_2$, and $a_2 = 2$ $a_{n+1} = 2. a_n, a_1 = 1$ create a new sequence $b_n = \frac{1}{n+1}$ $b_n = 2b_{n-1}, b_0 = 1$; the solution will be $b_n = 2^n$; thus $a_n = 2^{n-1}$

- $a_{n+1} d \cdot a_n = 0$, $a_0 = A$ where d is constant.
 - first order since a_{n+1} only depends on a_n (the previous term)
 - linear since each variable appears in the first power and there is no product such as a_{n+1} . a_n
 - homogeneous since the right hand side is 0
- The second order linear homogeneous recurrence relation :

$$C_0 a_{n+1} + C_1 a_n + C_2 a_{n-1} = 0$$
, $a_0 = A$, $a_1 = B$, $n \ge 2$

• The Fibonacci sequence:

$$F_{n+1} = F_n + F_{n-1}, F_0 = 1, F_2 = 1, n \ge 2$$

• The second order linear homogeneous recurrence relation :

$$C_0 a_{n+1} + C_1 a_n + C_2 a_{n-1} = 0, a_0 = A, a_1 = B, n \ge 2$$

 $a_{n+1} - d \cdot a_n = 0$, $a_0 = A$. the solution was in the form of $a_n = A \cdot d^n$

• Similarly, we look for a solution in the form of $a_n = c.r^n$ If we place it in the equation:

 $C_0 c.r^{n+1} + C_1 c.r^n + C_2 c.r^{n-1} = 0$

 $C_0r^2 + C_1r + C_2 = 0$ (characteristic equation)

The solutions for the characteristic equation are called characteristic roots; r_1 and r_2

• $a_{n+1} + a_n - 6a_{n-1} = 0$, $a_0 = -1$, $a_1 = 8$, $n \ge 2$

 $r^2 + r - 6 = 0$ (characteristic equation) $r_1 = 2, r_2 = -3$ (characteristic roots)

the solution will be in the form of $a_n = c_1 2^n + c_2 (-3)^n$.

$$a_0 = c_1 2^0 + c_2 (-3)^0 \rightarrow -1 = c_1 + c_2$$

 $a_1 = c_1 2^1 + c_2 (-3)^1 \rightarrow 8 = 2c_1 - 3c_2$

$$c_{1} + c_{2} = -1$$

$$2c_{1} - 3c_{2} = 8$$

$$c_{1} = 1, c_{2} = -2$$

$$a_{n} = 2^{n} - 2 \cdot (-3)^{n}$$

 Suppose we have a 2xn chessboard and we wish to cover it using 2x1 and 1x2 dominoes. In how many different ways can we cover it ?

 Suppose we have a 2xn chessboard and we wish to cover it using 2x1 and 1x2 dominoes. In how many different ways can we cover it ?

- Suppose we have a 2xn chessboard and we wish to cover it using 2x1 and 1x2 dominoes. In how many different ways can we cover it ?
- $b_n = b_{n-1} + b_{n-2}, n \ge 3, b_1 = 1 \text{ and } b_2 = 2$ $r^2 - r - 1 = 0$ (characteristic equation) $r_1 = \frac{1+\sqrt{5}}{2}, r_2 = \frac{1-\sqrt{5}}{2}$ (characteristic roots) the solution will be in the form of $b_n = c_1 (\frac{1+\sqrt{5}}{2})^n + c_2 (\frac{1-\sqrt{5}}{2})^n$ $b_0 = c_1 (\frac{1+\sqrt{5}}{2})^0 + c_2 (\frac{1-\sqrt{5}}{2})^0 \rightarrow 1 = c_1 + c_2$ $b_1 = c_1 (\frac{1+\sqrt{5}}{2})^1 + c_2 (\frac{1-\sqrt{5}}{2})^1 \rightarrow 2 = (\frac{1+\sqrt{5}}{2})c_1 + (\frac{1-\sqrt{5}}{2})c_2$ $c_1 = 1/\sqrt{5}, c_2 = -1/\sqrt{5}$ \longrightarrow $b_n = \frac{1}{\sqrt{5}} \left((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n \right)$

• 3 can be written as a sum of positive integers in 4 different ways:

• How many different palindromes can be found for a given $n \in \mathbb{Z}^+$?

$$\begin{split} b_n &= 2b_{n-2}, n \ge 3, b_1 = 1 \text{ and } b_2 = 2 \\ r^2 - 2 &= 0 \quad \text{(characteristic equation)} \\ r_1 &= \sqrt{2}, r_2 = -\sqrt{2} \quad \text{(characteristic roots)} \\ \text{the solution will be in the form of } b_n &= c_1(\sqrt{2})^n + c_2(-\sqrt{2})^n \\ b_0 &= c_1(\sqrt{2})^0 + c_2(-\sqrt{2})^0 \rightarrow \quad 1 = c_1 + c_2 \\ b_1 &= c_1(\sqrt{2})^1 + c_2(-\sqrt{2})^1 \rightarrow \quad 2 = (\sqrt{2})c_1 + (-\sqrt{2})c_2 \\ b_n &= (\frac{1}{2} + \frac{1}{2\sqrt{2}})(\sqrt{2})^n + (\frac{1}{2} - \frac{1}{2\sqrt{2}})(-\sqrt{2})^n \end{split}$$