
Algorithms



• Definition: A set of steps to accomplish a task

to get the school from your home

to find an item in a supermarket

• In CS, an algorithm is a set of instructions for a 
computer program to accomplish a task

Google map uses a route finding alg to give you
a route from your current location
to a destination point. 
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• design an algorithm to find the maximum number of a 
finite sequence of numbers (not sorted)

– set a temporary variable, temp

– set temp as the first element of the sequence

– compare the second element of the sequence with
temp: if the second is bigger than temp, set temp as 
the second; if not, do nothing; pass to the third one

– compare the third element of the sequence with temp: 
if the third is bigger than temp, set temp as the third; 
if not, do nothing; pass to the fourth one

– continue in this way till there is no more element in the
sequence, and output temp
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MAX-INTEGER

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: max of {𝑎1, 𝑎2, . . . , 𝑎𝑛}

max = 𝑎1
for i = 2 to n 

if max < 𝑎𝑖
max = 𝑎𝑖

return max
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Basic goals for an algorithm 

• always correct

• always terminates

• has good performance  
performance often draws line between what is 
possible and what is impossible
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How do we evaluate efficiency?

• using asymptotic analysis, we can evaluate the 
efficiency of an algorithm independent of the 
software and the hardware 
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• Running time 

• depends on input (it’s easy to search an element in a sorted 
sequence)

• parameterized by the input size

• It’s desired an upper bound to guarantee the performance 

• Two kinds of analysis for the running time

• Worst case analysis (usually), maximum time on any input of 
size n 

• Average case analysis(sometimes), expected time over all 
inputs of size n 
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Big-O Notation

• used to estimate the number of operations the algorithm uses in
terms of the size of its input

• enables us to determine whether it is practical to use the
corresponding algorithm to solve the given problem, and to
compare two algorithms in order to decide which one is more
efficient

Definition : Let 𝑓, 𝑔 ∶ ℤ+ → ℝ be two functions. If there are
constants 𝐶 and 𝑘 such that 𝑓(𝑥) ≤ 𝐶. 𝑔(𝑥) for all 𝑥 ∈ ℤ where 𝑥 ≥
𝑘, we say that 𝑔 dominates 𝑓 (or 𝑓 is big-O of 𝑔),

𝑓 𝑥 = 𝑂(𝑔 𝑥 )



Big-O Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑥 = 5𝑥 and 𝑔 𝑥 = 𝑥2.

– 𝑓 1 = 5, 𝑓 2 = 10, 𝑓 3 = 15, 𝑓 4 = 20, 𝑓 5 = 25, . . .
𝑔 1 = 1, 𝑔 2 = 4, 𝑔 3 = 9, 𝑔 4 = 16, 𝑔 5 = 25, . . .

– for 𝑛 ≥ 5, 𝑛2 ≥ 5𝑛 → 𝑓(𝑥) ≤ 𝑔(𝑥)

– for 𝐶 = 1 and 𝑘 = 5,

𝑓(𝑥) ≤ 𝐶. 𝑔(𝑥) for all 𝑥 ≥ 𝑘. Thus, 𝑓 𝑥 = 𝑂(𝑔 𝑥 ).

– C and k don’t have to be unique



Big-O Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑥 = 5𝑥2 + 3𝑥 + 1 and 𝑔 𝑥 = 𝑥2.

𝑓 𝑥 = 5𝑥2 + 3𝑥 + 1 = 5𝑥2 + 3𝑥 + 1

≤ 5𝑥2 + 3𝑥2 + 𝑥2 = 9𝑥2 = 9 𝑔 𝑥

for 𝐶 = 9 and 𝑘 = 1,

𝑓(𝑥) ≤ 𝐶. 𝑔(𝑥) for all 𝑥 ≥ 𝑘. Thus, 𝑓 𝑥 = 𝑂(𝑔 𝑥 ).

𝑔 𝑥 = 𝑥2 = 𝑥2 ≤ 5𝑥2 ≤ 5𝑥2 + 3𝑥 + 1 = 𝑓(𝑥)

for 𝐶 = 1 and 𝑘 = 1,

𝑔(𝑥) ≤ 𝐶. 𝑓(𝑥) for all 𝑥 ≥ 𝑘. Thus, 𝑔 𝑥 = 𝑂(𝑓 𝑥 ).



Big-O Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑥 = 7𝑥2 and 𝑔 𝑥 = 𝑥3.

𝑓 𝑥 = 7𝑥2 =7𝑥2 ≤ 7𝑥3 = 7 𝑔 𝑥

for 𝐶 = 7 and 𝑘 = 1,

𝑓(𝑥) ≤ 𝐶. 𝑔(𝑥) for all 𝑥 ≥ 𝑘. Thus, 𝑓 𝑥 = 𝑂(𝑔 𝑥 ).

𝑔 𝑥 = 𝑥3 = 𝑥3 ≤ 𝐶.7. 𝑥2= 𝐶. 𝑓(𝑥) → 𝑥 ≤ 𝐶. 7 for all 𝑥 ≥ 𝑘

there cannot be any 𝐶 and 𝑘 that satisfy this inequality.



Big-O Notation

• 𝑓, 𝑔 ∶ ℤ+ → ℝ, 𝑓 𝑥 = 4𝑥3 − 9𝑥2 + 3𝑥 + 2 and 𝑔 𝑥 = 𝑥3.

𝑓 𝑥 = 4𝑥3 − 9𝑥2 + 3𝑥 + 2 ≤ 4𝑥3 + −9𝑥2 + 3𝑥 + 2

≤ 4𝑥3 + 9𝑥3 + 3𝑥3 + 2𝑥3

= 18𝑥3 = 18 𝑔 𝑥

for 𝐶 = 18 and 𝑘 = 1,

𝑓(𝑥) ≤ 𝐶. 𝑔(𝑥) for all 𝑥 ≥ 𝑘. Thus, 𝑓 𝑥 = 𝑂(𝑔 𝑥 ).

𝑔 𝑥 = 𝑥3 ≤ 𝐶. 4𝑥3 − 9𝑥2 + 3𝑥 + 2 = 𝐶. 𝑓(𝑥) .

Assume 𝐶 = 1, then 𝑥3 ≤ 4𝑥3 − 9𝑥2 + 3𝑥 + 2

𝑥3 ≤ 𝑥3 + 3𝑥3 − 9𝑥2 + 3𝑥 + 2

3𝑥3 − 9𝑥2 ≥ 0 → 𝑥2 3𝑥 − 9 ≥ 0 for all 𝑥 ≥ 3

for 𝐶 = 1 and 𝑘 = 3,

𝑔(𝑥) ≤ 𝐶. 𝑓(𝑥) for all 𝑥 ≥ 𝑘. Thus, 𝑔 𝑥 = 𝑂(𝑓 𝑥 ).



Big-O Notation

• 𝑓 ∶ ℤ+ → ℝ, 𝑓 𝑥 = 𝑎𝑡𝑥
𝑡 + 𝑎𝑡−1𝑥

𝑡−1+. . . +𝑎1𝑥 + 𝑎0

𝑓 𝑥 = 𝑎𝑡𝑥
𝑡 + 𝑎𝑡−1𝑥

𝑡−1+. . . +𝑎1𝑥 + 𝑎0 ≤ 𝑎𝑡𝑥
𝑡 +. . . + 𝑎1𝑥 + 𝑎0

= 𝑎𝑡 . 𝑥
𝑡+. . . + 𝑎1 . 𝑥 + 𝑎0

≤ 𝑎𝑡 . 𝑥
𝑡+. . . + 𝑎1 . 𝑥

𝑡+ 𝑎0 . 𝑥
𝑡

≤ 𝑎𝑡 +. . . + 𝑎1 + 𝑎0 . 𝑥𝑡= 𝐶. 𝑥𝑡

for 𝐶 = 𝑎𝑡 +. . . + 𝑎1 + 𝑎0 and 𝑘 = 1,

𝑓(𝑥) ≤ 𝐶. 𝑥𝑡 for all 𝑥 ≥ 𝑘. Thus, 𝑓 𝑥 = 𝑂(𝑥𝑡)



Big-O Notation
• 𝑓 ∶ ℤ+ → ℝ, 𝑓 𝑥 = 1 + 2+ . . . + 𝑥

𝑓 𝑥 = 1 + 2+ . . . + 𝑥 = 1 + 2+ . . . + 𝑥 ≤ 𝑥 + 𝑥+ . . . + 𝑥 = 𝑥2

for 𝐶 = 1 and 𝑘 = 1,

𝑓(𝑥) ≤ 𝐶. 𝑥2 for all 𝑥 ≥ 𝑘. Thus, 𝑓 𝑥 = 𝑂(𝑥2)

• 𝑓 ∶ ℤ+ → ℝ, 𝑓 𝑥 = 12 + 22+ . . . +𝑥2

𝑓 𝑥 = 12 + 22+ . . . +𝑥2 = 12 + 22+ . . . +𝑥2 ≤ 𝑥2 + 𝑥2+ . . . +𝑥2 = 𝑥3

for 𝐶 = 1 and 𝑘 = 1,

𝑓(𝑥) ≤ 𝐶. 𝑥3 for all 𝑥 ≥ 𝑘. Thus, 𝑓 𝑥 = 𝑂(𝑥3)

• 𝑓 ∶ ℤ+ → ℝ, 𝑓 𝑥 = 1𝑡 + 2𝑡+ . . . +𝑥𝑡

𝑓 𝑥 = 1𝑡 + 2𝑡+ . . . +𝑥𝑡 = 1𝑡 + 2𝑡+ . . . +𝑥𝑡 ≤ 𝑥𝑡 + 𝑥𝑡+ . . . +𝑥𝑡 = 𝑥𝑡+1

for 𝐶 = 1 and 𝑘 = 1,

𝑓(𝑥) ≤ 𝐶. 𝑥𝑡+1 for all 𝑥 ≥ 𝑘. Thus, 𝑓 𝑥 = 𝑂(𝑥𝑡+1)



Big-O Notation

• 𝑓 ∶ ℤ+ → ℝ, 𝑓 𝑥 = 1.2. … . 𝑥 = 𝑥!

𝑓 𝑥 = 1.2. … . 𝑥 = 1.2. … . 𝑥 ≤ 𝑥. 𝑥. … . 𝑥 = 𝑥𝑥

for 𝐶 = 1 and 𝑘 = 1,

𝑓(𝑥) ≤ 𝐶. 𝑥𝑥 for all 𝑥 ≥ 𝑘. Thus, 𝑓 𝑥 = 𝑂(𝑥𝑥)

• 𝑓 ∶ ℤ+ → ℝ, 𝑓 𝑥 = log 𝑥 !

𝑓 𝑥 = 1.2. … . log 𝑥 = 1.2. … . log 𝑥 ≤ log 𝑥 … . log 𝑥 = log 𝑥log 𝑥

for 𝐶 = 1 and 𝑘 = 1,

𝑓(𝑥) ≤ 𝐶. log 𝑥 . log 𝑥 for all 𝑥 ≥ 𝑘. Thus, 𝑓 𝑥 = 𝑂(log2𝑥)

• use smallest possible function for big-O notation

1 log 𝑛 𝑛 𝑛 log 𝑛 𝑛2 𝑛𝑡 2𝑛 𝑛!

constant

logarithmic

linear quadratic

polynomial

exponential

factorial



Big-O Notation

• 𝑓1 𝑛 = 𝑂(𝑔1 𝑛 ) and 𝑓2 𝑛 = 𝑂 𝑔2 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 ≤ 𝑓1 𝑛 + 𝑓2 𝑛

≤ 𝐶1 𝑔1 𝑛 + 𝐶2 𝑔2 𝑛

≤ 𝐶1 𝑔 𝑛 + 𝐶2 𝑔 𝑛 where 𝑔 𝑛 = 𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 }

= (𝐶1+𝐶2) 𝑔 𝑛

𝑓1 𝑛 + 𝑓2 𝑛 = 𝑂(𝑚𝑎 𝑥 {𝑔1 𝑛 , 𝑔2 𝑛 })

𝑓1 𝑛 . 𝑓2 𝑛 = 𝑂(𝑔1 𝑛 .𝑔2 𝑛 )

• 𝑓 𝑛 = 𝑛 + 1 log 𝑛2 + 1 + 3𝑛2

𝑂(𝑛)

log 𝑛2 + 1 ≤ log 2𝑛2

= log 2 + log𝑛2

= log 2 +2 log 𝑛
≤ 3 log𝑛

𝑂(log 𝑛) 𝑂(𝑛2)

𝑓 𝑛 = 𝑂(𝑛2)



MAX-INTEGER

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛}
output: max of {𝑎1, 𝑎2, . . . , 𝑎𝑛}

max = 𝑎1
for i = 2 to n 

if max < 𝑎𝑖
max = 𝑎𝑖

return max

Worst-Case Analysis

2, 5, 11, 20, 24, 37, 38, 45

max = 2

5 op

i = 2

max < 5
max = 5  

i = 3

max < 11
max = 11    

2 op

1 op

n–1 times

𝑓 𝑛 = 2 𝑛 − 1 + 1 = 2𝑛 − 1
𝑓 𝑛 = 𝑂(𝑛)



LINEAR-SEARCH

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

𝑘 = 1
𝑙𝑜𝑐 = 0
while 𝑘 ≤ 𝑛

if 𝑥 = 𝑎𝑘
𝑙𝑜𝑐 = 𝑘

𝑘 = 𝑘 + 1
return 𝑘

Worst-Case Analysis

3 op

2 op

n times

𝑓 𝑛 = 3𝑛 + 2 ( 𝑜𝑟 3𝑛 + 3)
𝑓 𝑛 = 𝑂(𝑛)

LINEAR-SEARCH

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

𝑙𝑜𝑐 = 0
for i = 1 to n

if 𝑥 = 𝑎𝑖
𝑙𝑜𝑐 = 𝑖

return 𝑙𝑜𝑐

𝑓 𝑛 = 𝑛 + 1 ( 𝑜𝑟 𝑛 + 2)
𝑓 𝑛 = 𝑂(𝑛)

1 op

1 op

n times



BINARY-SEARCH

input : {𝑎1< 𝑎2 < . . . < 𝑎𝑛; 𝑥}
output: location

𝑖 = 1
𝑗 = 𝑛
𝑙𝑜𝑐 = 0
while 𝑖 ≤ 𝑗

𝑚 = (𝑖 + 𝑗)/2
if 𝑥 = 𝑎𝑚

𝑙𝑜𝑐 = 𝑚
elseif 𝑥 > 𝑎𝑚

𝑖 = 𝑚 + 1
else

𝑗 = 𝑚
return 𝑙𝑜𝑐

Worst-Case Analysis

2, 5, 11, 20, 24, 37, 38, 45; 11

𝑖 = 1
𝑗 = 8
𝑙𝑜𝑐 = 0

𝑚 = (1 + 8)/2 = 4
11 ≠ 20
𝑥 > 20
𝑗 = 4

𝑚 = (1 + 4)/2 = 2
11 ≠ 5
𝑥 > 5
𝑖 = 3

11 op



BINARY-SEARCH

input : {𝑎1< 𝑎2 < . . . < 𝑎𝑛; 𝑥}
output: location

𝑖 = 1
𝑗 = 𝑛
𝑙𝑜𝑐 = 0
while 𝑖 ≤ 𝑗

𝑚 = (𝑖 + 𝑗)/2
if 𝑥 = 𝑎𝑚

𝑙𝑜𝑐 = 𝑚
elseif 𝑥 > 𝑎𝑚

𝑖 = 𝑚 + 1
else

𝑗 = 𝑚
return 𝑙𝑜𝑐

Worst-Case Analysis

4 op

3 op

k times

𝑓 𝑛 = 4𝑘 + 3 𝑜𝑟 4𝑘 + 4
𝑓 𝑛 = 4 log𝑛 + 3
𝑓 𝑛 = 𝑂(log 𝑛)

𝑛

𝑛/2

𝑛/4

1

2𝑘 < 𝑛 < 2𝑘+1

𝑘 = log𝑛



Average-Case Analysis

LINEAR-SEARCH

input : {𝑎1, 𝑎2, . . . , 𝑎𝑛; 𝑥}
output: location

for i = 1 to n
if 𝑥 = 𝑎𝑖

return 𝑖
return 0

• if 𝑥 = 𝑎1, then the algorithm terminates
after 2 operations

if 𝑥 = 𝑎2, then the algorithm terminates
after 3 operations

⋮
if 𝑥 = 𝑎𝑖 , then the algorithm terminates
after 𝑖 + 1 operation

⋮
if 𝑥 = 𝑎𝑛, then the algorithm terminates
after 𝑛 + 1 operations

if𝑥 ∉ 𝐿, then the algorithm terminates
after 𝑛 + 1 operations

• let 𝑝 be the probability that 𝑥 ∈ 𝐿, and
𝑞 = 1 − 𝑝 be the probability that 𝑥 ∉ 𝐿

• for each element 𝑎𝑖, the probability that 𝑥 = 𝑎𝑖 is Τ𝑝 𝑛

• the expected value for the number of operations

𝐸 𝑋 = σ𝑝 𝑠 . 𝑋 𝑠

= 2.
𝑝

𝑛
+ 3.

𝑝

𝑛
+ . . . + 𝑛 + 1 .

𝑝

𝑛
+ 𝑛 + 1 . 𝑞 = 𝑝

𝑛+3

2
+ 𝑞. 𝑛 + 1

• for 𝑝 = 1 and 𝑞 = 0

𝐸 𝑋 = (𝑛 + 3)/2

• for 𝑝 = 0 and 𝑞 = 1

𝐸 𝑋 = 𝑛 + 1

• for 𝑝 = 𝑞 = 1/2

𝐸 𝑋 = (3𝑛 + 5)/4


