Algorithms

Introduction

- Definition: A set of steps to accomplish a task to get the school from your home to find an item in a supermarket
- In CS, an algorithm is a set of instructions for a computer program to accomplish a task

Google map uses a route finding alg to give you a route from your current location to a destination point.

Introduction

- design an algorithm to find the maximum number of a finite sequence of numbers (not sorted)
- set a temporary variable, temp
- set temp as the first element of the sequence
- compare the second element of the sequence with temp: if the second is bigger than temp, set temp as the second; if not, do nothing; pass to the third one
- compare the third element of the sequence with temp: if the third is bigger than temp, set temp as the third; if not, do nothing; pass to the fourth one
- continue in this way till there is no more element in the sequence, and output temp

Introduction

```
MAX-INTEGER
input : {a, , a},\ldots,\ldots,\mp@subsup{a}{n}{}
output: max of {\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},\ldots,\mp@subsup{a}{n}{}}
max = a1
for i=2 to n
    if max < ai
    max = ai
return max
```


Introduction

Basic goals for an algorithm

- always correct \dagger
- always terminates
- has good performance performance often draws line between what is possible and what is impossible

Introduction

How do we evaluate efficiency?

- using asymptotic analysis, we can evaluate the efficiency of an algorithm independent of the software and the hardware

Introduction

- Running time
- depends on input (it's easy to search an element in a sorted sequence)
- parameterized by the input size
- It's desired an upper bound to guarantee the performance
- Two kinds of analysis for the running time
- Worst case analysis (usually), maximum time on any input of size n
- Average case analysis(sometimes), expected time over all inputs of size n

Big-O Notation

- used to estimate the number of operations the algorithm uses in terms of the size of its input
- enables us to determine whether it is practical to use the corresponding algorithm to solve the given problem, and to compare two algorithms in order to decide which one is more efficient

Definition : Let $f, g: \mathbb{Z}^{+} \rightarrow \mathbb{R}$ be two functions. If there are constants C and k such that $|f(x)| \leq C$. $|g(x)|$ for all $x \in \mathbb{Z}$ where $x \geq$ k, we say that g dominates f (or f is big-O of g),

$$
f(x)=O(g(x))
$$

Big-O Notation

- $f, g: \mathbb{Z}^{+} \rightarrow \mathbb{R}, f(x)=5 x$ and $g(x)=x^{2}$.
- $f(1)=5, f(2)=10, f(3)=15, f(4)=20, f(5)=25, \ldots$ $g(1)=1, g(2)=4, g(3)=9, \quad g(4)=16, g(5)=25, \ldots$
- for $n \geq 5, n^{2} \geq 5 n \rightarrow|f(x)| \leq|g(x)|$
- for $C=1$ and $k=5$,

$$
|f(x)| \leq C .|g(x)| \text { for all } x \geq k \text {. Thus, } f(x)=O(g(x)) \text {. }
$$

- C and k don't have to be unique

Big-O Notation

- $f, g: \mathbb{Z}^{+} \rightarrow \mathbb{R}, f(x)=5 x^{2}+3 x+1$ and $g(x)=x^{2}$.

$$
\begin{aligned}
|f(x)|=\left|5 x^{2}+3 x+1\right| & =5 x^{2}+3 x+1 \\
& \leq 5 x^{2}+3 x^{2}+x^{2}=9 x^{2}=9|g(x)|
\end{aligned}
$$

for $C=9$ and $k=1$,
$|f(x)| \leq C .|g(x)|$ for all $x \geq k$. Thus, $f(x)=O(g(x))$.
$|g(x)|=\left|x^{2}\right|=x^{2} \leq 5 x^{2} \leq 5 x^{2}+3 x+1=|f(x)|$
for $C=1$ and $k=1$,
$|g(x)| \leq C .|f(x)|$ for all $x \geq k$. Thus, $g(x)=O(f(x))$.

Big-O Notation

- $f, g: \mathbb{Z}^{+} \rightarrow \mathbb{R}, f(x)=7 x^{2}$ and $g(x)=x^{3}$.
$|f(x)|=\left|7 x^{2}\right|=7 x^{2} \leq 7 x^{3}=7|g(x)|$
for $C=7$ and $k=1$,
$|f(x)| \leq C .|g(x)|$ for all $x \geq k$. Thus, $f(x)=O(g(x))$.
$|g(x)|=\left|x^{3}\right|=x^{3} \leq C .7 \cdot x^{2}=C .|f(x)| \rightarrow x \leq C .7$ for all $x \geq k$
there cannot be any C and k that satisfy this inequality.

Big-O Notation

- $f, g: \mathbb{Z}^{+} \rightarrow \mathbb{R}, f(x)=4 x^{3}-9 x^{2}+3 x+2$ and $g(x)=x^{3}$.

$$
\begin{aligned}
|f(x)|=\left|4 x^{3}-9 x^{2}+3 x+2\right| & \leq\left|4 x^{3}\right|+\left|-9 x^{2}\right|+|3 x|+|2| \\
& \leq 4 x^{3}+9 x^{3}+3 x^{3}+2 x^{3} \\
& =18 x^{3}=18|g(x)|
\end{aligned}
$$

for $C=18$ and $k=1$,
$|f(x)| \leq C .|g(x)|$ for all $x \geq k$. Thus, $f(x)=O(g(x))$.
$|g(x)|=\left|x^{3}\right| \leq C .\left|4 x^{3}-9 x^{2}+3 x+2\right|=C .|f(x)|$.
Assume $C=1$, then $\left|x^{3}\right| \leq\left|4 x^{3}-9 x^{2}+3 x+2\right|$

$$
\left|x^{3}\right| \leq\left|x^{3}+3 x^{3}-9 x^{2}+3 x+2\right|
$$

$3 x^{3}-9 x^{2} \geq 0 \rightarrow x^{2}(3 x-9) \geq 0$ for all $x \geq 3$
for $C=1$ and $k=3$,
$|g(x)| \leq C .|f(x)|$ for all $x \geq k$. Thus, $g(x)=O(f(x))$.

Big-O Notation

- $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}, f(x)=a_{t} x^{t}+a_{t-1} x^{t-1}+\ldots+a_{1} x+a_{0}$
$|f(x)|=\left|a_{t} x^{t}+a_{t-1} x^{t-1}+\ldots+a_{1} x+a_{0}\right| \leq\left|a_{t} x^{t}\right|+\ldots+\left|a_{1} x\right|+\left|a_{0}\right|$

$$
\begin{aligned}
& =\left|a_{t}\right| \cdot x^{t}+\ldots+\left|a_{1}\right| \cdot x+\left|a_{0}\right| \\
& \leq\left|a_{t}\right| \cdot x^{t}+\ldots+\left|a_{1}\right| \cdot x^{t}+\left|a_{0}\right| \cdot x^{t} \\
& \leq\left(\left|a_{t}\right|+\ldots+\left|a_{1}\right|+\left|a_{0}\right|\right) \cdot x^{t}=C \cdot\left|x^{t}\right|
\end{aligned}
$$

for $C=\left|a_{t}\right|+\ldots+\left|a_{1}\right|+\left|a_{0}\right|$ and $k=1$,
$|f(x)| \leq C .\left|x^{t}\right|$ for all $x \geq k$. Thus, $f(x)=O\left(x^{t}\right)$

Big-O Notation

- $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}, f(x)=1+2+\ldots+x$
$|f(x)|=|1+2+\ldots+x|=1+2+\ldots+x \leq x+x+\ldots+x=\left|x^{2}\right|$
for $C=1$ and $k=1$,
$|f(x)| \leq C .\left|x^{2}\right|$ for all $x \geq k$. Thus, $f(x)=O\left(x^{2}\right)$
- $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}, f(x)=1^{2}+2^{2}+\ldots+x^{2}$
$|f(x)|=\left|1^{2}+2^{2}+\ldots+x^{2}\right|=1^{2}+2^{2}+\ldots+x^{2} \leq x^{2}+x^{2}+\ldots+x^{2}=\left|x^{3}\right|$
for $C=1$ and $k=1$,
$|f(x)| \leq C .\left|x^{3}\right|$ for all $x \geq k$. Thus, $f(x)=O\left(x^{3}\right)$
- $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}, f(x)=1^{t}+2^{t}+\ldots+x^{t}$
$|f(x)|=\left|1^{t}+2^{t}+\ldots+x^{t}\right|=1^{t}+2^{t}+\ldots+x^{t} \leq x^{t}+x^{t}+\ldots+x^{t}=\left|x^{t+1}\right|$
for $C=1$ and $k=1$,
$|f(x)| \leq C .\left|x^{t+1}\right|$ for all $x \geq k$. Thus, $f(x)=O\left(x^{t+1}\right)$

Big-O Notation

- $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}, f(x)=1.2 \ldots x=x$!

$$
|f(x)|=|1.2 \ldots ., x|=1.2 \ldots . . x \leq x, x \ldots . x=\left|x^{x}\right|
$$

for $C=1$ and $k=1$,
$|f(x)| \leq C$. $\left|x^{x}\right|$ for all $x \geq k$. Thus, $f(x)=O\left(x^{x}\right)$

- $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}, f(x)=(\log x)$!
$|f(x)|=|1.2 \ldots . . \log x|=1.2 \ldots . \ldots \log x \leq \log x \ldots . \log x=\left|\log x^{\log x}\right|$
for $C=1$ and $k=1$,
$|f(x)| \leq C .|\log x \cdot \log x|$ for all $x \geq k$. Thus, $f(x)=O\left(\log ^{2} x\right)$
- use smallest possible function for big-O notation

| 1 | $\log n$ | n | $n \log n$ | n^{2} | n^{t} | 2^{n} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |$n!$| quadratic |
| :---: |
| constant |
| logarithmic |

Big-O Notation

- $f_{1}(n)=O\left(g_{1}(n)\right)$ and $f_{2}(n)=O\left(g_{2}(n)\right)$

$$
\begin{aligned}
\left|f_{1}(n)+f_{2}(n)\right| & \leq\left|f_{1}(n)\right|+\left|f_{2}(n)\right| \\
& \leq C_{1}\left|g_{1}(n)\right|+C_{2}\left|g_{2}(n)\right| \\
& \leq C_{1}|g(n)|+C_{2}|g(n)| \text { where } g(n)=\max \left\{g_{1}(n), g_{2}(n)\right\} \\
& =\left(C_{1}+C_{2}\right)|g(n)|
\end{aligned}
$$

$f_{1}(n)+f_{2}(n)=O\left(\max \left\{g_{1}(n), g_{2}(n)\right\}\right)$
$f_{1}(n) \cdot f_{2}(n)=O\left(g_{1}(n) \cdot g_{2}(n)\right)$

- $f(n)=(n+1) \log \left(n^{2}+1\right)+3 n^{2}$

$$
\begin{aligned}
\log \left(n^{2}+1\right) & \leq \log \left(2 n^{2}\right) \\
& =\log 2+\log n^{2} \\
& =\log 2+2 \log n \\
& \leq 3 \log n
\end{aligned}
$$

$$
f(n)=O\left(n^{2}\right)
$$

Worst-Case Analysis

MAX-INTEGER

input : $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
output: max of $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$

$$
\max =a_{1}=1 \mathrm{op}
$$

$$
\begin{aligned}
& \text { for } i=2 \text { to } n \\
& \quad \text { if } \max <a_{i}
\end{aligned} \quad n-1 \text { times }
$$

$$
\max =a_{i}
$$

return max

$$
2,5,11,20,24,37,38,45
$$

5 op

```
\[
\max =2
\]
\[
i=2
\]
\[
\max <5
\]
\[
\max =5
\]
\[
i=3
\]
\[
\max <11
\]
\[
\max =11
\]
```

$$
\begin{aligned}
& f(n)=2(n-1)+1=2 n-1 \\
& f(n)=O(n)
\end{aligned}
$$

Worst-Case Analysis

LINEAR-SEARCH

input : $\left\{a_{1}, a_{2}, \ldots, a_{n} ; x\right\}$
output: location
$\begin{aligned} & k=1 \\ & l o c=0\end{aligned} \geq 2$ op
while $k \leq n=n$ times
if $x=a_{k}$
$\quad l o c=k$
$k=k+1$
return k
$f(n)=3 n+2($ or $3 n+3)$
$f(n)=O(n)$

LINEAR-SEARCH

input : $\left\{a_{1}, a_{2}, \ldots, a_{n} ; x\right\}$
output: location
loc $=0 \quad 1$ op
for $\mathrm{i}=1$ to n — times
if $\begin{aligned} & x=a_{i} \\ & \quad l o c=i\end{aligned}$
return loc

$$
\begin{aligned}
& f(n)=n+1(\text { or } n+2) \\
& f(n)=O(n)
\end{aligned}
$$

Worst-Case Analysis

BINARY-SEARCH

11 op
input : $\left\{a_{1}<a_{2}<\ldots<a_{n} ; x\right\}$
output: location
$2,5,11,20,24,37,38,45 ; 11$
$i=1$
$j=n$
loc $=0$
while $i \leq j$

$$
\begin{aligned}
& i=1 \\
& j=8 \\
& l o c=0 \\
& m=\lfloor(1+8) / 2\rfloor=4 \\
& 11 \neq 20 \\
& x \ngtr 20 \\
& j=4 \\
& m=\lfloor(1+4) / 2\rfloor=2 \\
& 11 \neq 5 \\
& x>5 \\
& i=3
\end{aligned}
$$

Worst-Case Analysis

BINARY-SEARCH

input : $\left\{a_{1}<a_{2}<\ldots<a_{n} ; x\right\}$
output: location
$i=1$
$j=n$
loc $=0$

while $i \leq j$

$$
j=m
$$

return loc

$$
\begin{aligned}
& f(n)=4 k+3(\text { or } 4 k+4) \\
& f(n)=4 \log n+3 \\
& f(n)=O(\log n)
\end{aligned}
$$

Average-Case Analysis

LINEAR-SEARCH

input : $\left\{a_{1}, a_{2}, \ldots, a_{n} ; x\right\}$
output: location
for $\mathrm{i}=1$ to n
if $x=a_{i}$
return i
return 0

- if $x=a_{1}$, then the algorithm terminates after 2 operations
if $x=a_{2}$, then the algorithm terminates after 3 operations
if $x=a_{i}$, then the algorithm terminates after $i+1$ operation
if $x=a_{n}$, then the algorithm terminates after $n+1$ operations
if $x \notin L$, then the algorithm terminates after $n+1$ operations
- let p be the probability that $x \in L$, and $q=1-p$ be the probability that $x \notin L$
- for each element a_{i}, the probability that $x=a_{i}$ is p / n
- the expected value for the number of operations

$$
\begin{aligned}
E(X) & =\sum p(s) \cdot X(s) \\
& =2 \cdot \frac{p}{n}+3 \cdot \frac{p}{n}+\ldots+(n+1) \cdot \frac{p}{n}+(n+1) \cdot q=p \frac{(n+3)}{2}+q \cdot(n+1)
\end{aligned}
$$

- for $p=1$ and $q=0$ $E(X)=(n+3) / 2$
- for $p=0$ and $q=1$

$$
E(X)=n+1
$$

- for $p=q=1 / 2$
$E(X)=(3 n+5) / 4$

