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𝑅 ⊆ 𝐴 × 𝐵

Functions as Relations

domain codomain

R(A) : the image of R, 𝑅 𝐴 = {𝑦 ∈ 𝐵ȁ 𝑥, 𝑦 ∈ 𝑅, ∃𝑥 ∈ 𝐴}

Function is a relation that satisfies two conditions : 

• for every element x of the domain, there is an element y in the range
such that (x,y) is an element of the relation

Let 𝑅 ⊆ 𝐴 × 𝐵 be the relation, ∀𝑥 𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐵 𝑠. 𝑡. 𝑥, 𝑦 ∈ 𝑅

• for every element x of the domain, there is only one element y of the
range such that (x,y) is an element of the relation

Let 𝑅 ⊆ 𝐴 × 𝐵 be the relation, ∀𝑥[( 𝑥, 𝑦1 ∈ 𝑅 ˄ 𝑥, 𝑦2 ∈ 𝑅) → (𝑦1 = 𝑦2)]



• f assigns every element of A to exactly one element of B

if 𝑎, 𝑏 ∈ 𝑓, then 𝑓 𝑎 = 𝑏

Definition

A B

f(A)
f

domain codomain

image

preimage
of b

image
of a



Definition

How many functions can be defined from a set A to a set B where
lAl=n and lBl=m ?

• Assume 𝐴 = {𝑎1, . . . , 𝑎𝑛} and 𝐵 = {𝑏1, . . . , 𝑏𝑚}

cannot be 𝑎1, 𝑏1 and 𝑎1, 𝑏3

f = { 𝑎1, , 𝑎2, , . . . , 𝑎𝑛, }

m m m

𝑚𝑛 = 𝐵 𝐴 functions



One-to-One

• Let f : A ⇾ B. A function is called one-to-one (or injective) if
and only if f(a) = f(b) implies a = b. 

∀𝑎∀𝑏 𝑓 𝑎 = 𝑓 𝑏 → 𝑎 = 𝑏

or ∀𝑎∀𝑏 𝑎 ≠ 𝑏 → 𝑓 𝑎 ≠ 𝑓 𝑏

A B

a

b

c

1

2

3

4

Definition



Definition

One-to-One

• Let f : A ⇾ B. A function is called one-to-one (or injective) if
and only if f(a) = f(b) implies a = b. 

• Determine whether the function 𝑓 𝑥 = 3𝑥 + 1 (𝑓: ℝ → ℝ) is a 
one-to-one function or not. 

∀𝑥1, 𝑥2 ∈ ℝ,  𝑓 𝑥1 = 𝑓 𝑥2 → 3𝑥1 + 1 = 3𝑥2 + 1
→ 𝑥1 = 𝑥2

• Determine whether the function 𝑓 𝑥 = 𝑥4 − 𝑥2 (𝑓: ℝ → ℝ) is a 
one-to-one function or not. 

∀𝑥1, 𝑥2 ∈ ℝ,  𝑥1 ≠ 𝑥2 → 𝑓 𝑥1 ≠ 𝑓 𝑥2

for 𝑥1 = 1 and 𝑥2 = −1, 𝑥1 ≠ 𝑥2 but 𝑓 𝑥1 = 𝑓 𝑥2



Onto

• Let f : A ⇾ B. A function is called onto (or surjective) if f(A)=B, 
i.e. for all 𝑏 ∈ 𝐵, there is at least one 𝑎 ∈ 𝐴 such that f(a) = b

∀𝑏∃𝑎 𝑓 𝑎 = 𝑏
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Definition

Onto

• Let f : A ⇾ B. A function is called onto (or surjective) if f(A)=B, 
i.e. for all 𝑏 ∈ 𝐵, there is at least one 𝑎 ∈ 𝐴 such that f(a) = b

• Determine whether the function 𝑓 𝑥 = 3𝑥 + 1 (𝑓: ℚ → ℚ) is a 
onto function or not. 

∀𝑏 ∈ ℚ, 𝑓 𝑎 = 𝑏 ↔ 3𝑎 + 1 = 𝑏

↔ 𝑎 =
𝑏−1

3

Since 𝑎 =
𝑏−1

3
∈ ℚ, f is onto

• Determine whether the function 𝑓 𝑥 = 3𝑥 + 1 (𝑓: ℤ → ℤ) is a 
onto function or not. 

for 5 ∈ ℤ, there is no integer 𝑥 ∈ ℤ such that f(x) = 5. 



Definition

Bijection

• If a function both one-to-one and onto, it is called bijection. 

• the identity function 𝑓 𝑥 = 𝑥 (𝑓: 𝐴 → 𝐴) is a bijection

∀𝑥1, 𝑥2 ∈ 𝐴,  𝑓 𝑥1 = 𝑓 𝑥2 → 𝑥1 = 𝑥2

∀𝑎 ∈ 𝐴, 𝑓 𝑎 = a, the preimage of a is itself



Inverse
A B

f(A)
𝑓

𝑓−1

𝑓: 𝐴 → 𝐵

𝑓 𝑎 = 𝑏

𝑓−1: 𝐵 → 𝐴

𝑓−1 𝑏 = 𝑎

A B

f(A)
𝑓

𝑓−1

f(A)≠B

A B

sth

x

y

a

𝑓 𝑥 = 𝑓 𝑦 = 𝑎

𝑓−1

𝑓−1 𝑎 = 𝑥 and 𝑓−1 𝑎 = 𝑦



Inverse
A B

f(A)
𝑓

𝑓−1

𝑓: 𝐴 → 𝐵

𝑓 𝑎 = 𝑏

𝑓−1: 𝐵 → 𝐴

𝑓−1 𝑏 = 𝑎

A B

f(A)
𝑓

𝑓−1

f(A)≠B

A B

sth

x

y

a

𝑓 𝑥 = 𝑓 𝑦 = 𝑎

𝑓−1

𝑓−1 𝑎 = 𝑥 and 𝑓−1 𝑎 = 𝑦

If f is a bijection, then 𝑓−1 can be defined, 
i.e. f is invertible



Inverse

• If a function both one-to-one and onto, it is called bijection. 

If f is a bijection, then 𝑓−1 can be defined, i.e. f is invertible

• 𝑓: ℤ → ℤ, defined as 𝑓 𝑥 = 𝑥 + 1, f is invertible ?

∀𝑥1, 𝑥2 ∈ ℤ,  𝑓 𝑥1 = 𝑓 𝑥2 → 𝑥1 + 1 = 𝑥2 + 1
→ 𝑥1 = 𝑥2 (one-to-one)

∀𝑦 ∈ ℤ, 𝑓 𝑥 = y ↔ 𝑥 + 1 = 𝑦
↔ 𝑥 = 𝑦 − 1 ∈ ℤ (onto)

𝑓−1 𝑥 = 𝑥 − 1



Inverse

• If a function both one-to-one and onto, it is called bijection. 

If f is a bijection, then 𝑓−1 can be defined, i.e. f is invertible

• 𝑓: ℤ → ℤ, defined as 𝑓 𝑥 = 2𝑥 + 1, f is invertible ?

∀𝑥1, 𝑥2 ∈ ℤ,  𝑓 𝑥1 = 𝑓 𝑥2 → 2𝑥1 + 1 = 2𝑥2 + 1
→ 𝑥1 = 𝑥2 (one-to-one)

∀𝑦 ∈ ℤ, ∃𝑥 ∈ ℤ 𝑓 𝑥 = y ↔ 2𝑥 + 1 = 𝑦

↔ 𝑥 =
𝑦−1

2

but for some 𝑦 ∈ ℤ, 𝑥 =
𝑦−1

2
∉ ℤ (not onto)



Inverse

• If a function both one-to-one and onto, it is called bijection. 

If f is a bijection, then 𝑓−1 can be defined, i.e. f is invertible

• 𝑓: ℤ → ℕ, defined as 𝑓 𝑥 = ቊ
2𝑥 − 1 𝑖𝑓 𝑥 > 0
−2𝑥 𝑖𝑓 𝑥 ≤ 0

, f is invertible ?

∀𝑥1, 𝑥2 ∈ ℤ,  𝑓 𝑥1 = 𝑓 𝑥2 → 2𝑥1 − 1 = 2𝑥2 − 1
→ 𝑥1 = 𝑥2

∀𝑥1, 𝑥2 ∈ ℤ,  𝑓 𝑥1 = 𝑓 𝑥2 → −2𝑥1= −2𝑥2

→ 𝑥1 = 𝑥2 (one-to-one)

∀𝑦 ∈ ℤ, ∃𝑥 ∈ ℤ , if y = 2𝑘, ∃𝑘 ∈ ℤ, then 𝑓 𝑥 = y ↔ −2𝑥 = 𝑦

↔ 𝑥 = −
𝑦

2
= −𝑘 ∈ ℤ

∀𝑦 ∈ ℤ, ∃𝑥 ∈ ℤ , if y = 2𝑘 + 1, ∃𝑘 ∈ ℤ, 
then 𝑓 𝑥 = y ↔ 2𝑥 − 1 = 𝑦

↔ 𝑥 =
𝑦+1

2
= 𝑘 + 1 ∈ ℤ

(onto)



Composition
A B𝑓

𝑓: 𝐴 → 𝐵 and 𝑔: 𝐵 → 𝐶

𝑔 ∘ 𝑓: 𝐴 → 𝐶

𝑓 𝑎 = 𝑏 and g 𝑏 = 𝑐

𝑔 ∘ 𝑓 𝑎 = 𝑔 𝑓 𝑎 = 𝑔 𝑏 = 𝑐

C
𝑔

𝑔 ∘ 𝑓

a
b c



Composition

• 𝑓, 𝑔: ℤ → ℤ, 

𝑓 𝑥 = 3𝑥 + 1 and g 𝑥 = 2𝑥 − 1

𝑔 ∘ 𝑓 𝑥 = 𝑔 𝑓 𝑥 = 𝑔 3𝑥 + 1 = 2 3𝑥 + 1 − 1 = 6𝑥 + 1

𝑓 ∘ 𝑔 𝑥 = 𝑓 𝑔 𝑥 = 𝑓 2𝑥 − 1 = 3 2𝑥 − 1 + 1 = 6𝑥 − 2

• 𝑓: 𝐴 → 𝐵

𝑓 ∘ 𝑓−1 𝑦 = 𝑓(𝑓−1 𝑦 = 𝑓 𝑥 = 𝑦,    𝑓 ∘ 𝑓−1 = 𝐼𝐵

𝑓−1 ∘ 𝑓 𝑥 = 𝑓−1(𝑓 𝑥 ) = 𝑓−1(𝑦) = 𝑥,    𝑓−1 ∘ 𝑓 = 𝐼𝐴

• If f and g are one-to-one, then 𝑓 ∘ 𝑔 is also one-to-one.

∀𝑥1, 𝑥2 ∈ 𝐴, 𝑓 ∘ 𝑔 𝑥1 = 𝑓 ∘ 𝑔 𝑥2 → 𝑓 𝑔 𝑥1 = 𝑓(𝑔 𝑥2 )

→ 𝑔 𝑥1 = 𝑔 𝑥2 (f is one-to-one)
→ 𝑥1 = 𝑥2 (g is one-to-one)



Floor and Ceiling Functions

• floor function of a real number x : is the largest integer that is less
than or equal to x, denoted by 𝑥 .

1/5 = 0, −1/5 = −1, 3,56 = 3, −3,56 = −4

𝑥 = 𝑛 if 𝑛 ≤ 𝑥 < 𝑛 + 1 or 𝑥 = 𝑛 if 𝑥 − 1 ≤ 𝑛 < 𝑥

• ceiling function of a real number x : is the smallest integer that is 
greater than or equal to x, denoted by 𝑥 .

1/5 = 1,  −1/5 = 0,  3,56 = 4,  −3,56 = −3

𝑥 = 𝑛 if 𝑛 − 1 < 𝑥 ≤ 𝑛 or 𝑥 = 𝑛 if 𝑥 ≤ 𝑛 < 𝑥 + 1



Floor and Ceiling Functions

• show that if x is a real number, then 2𝑥 = 𝑥 + 𝑥 + 1/2

assume 𝑥 = 𝑛 + 𝜀 where n is integer and 0 ≤ 𝜀 < 1

0 ≤ 𝜀 <
1

2

1

2
≤ 𝜀 < 1

2𝑛 + 2𝜀 = 𝑛 + 𝜀 + 𝑛 + 𝜀 + 1/2 2𝑛 + 2𝜀 = 𝑛 + 𝜀 + 𝑛 + 𝜀 + 1/2
2𝑛 = 𝑛 + 𝑛 2𝑛 + 1 = 𝑛 + 𝑛 + 1

• determine whether 𝑥 + 𝑦 = 𝑥 + 𝑦 for all 𝑥, 𝑦 ∈ ℝ.

assume 0 < 𝑥, 𝑦 <
1

2
, then 𝑥 + 𝑦 < 1. 

𝑥 + 𝑦 = 𝑥 + 𝑦
1 ≠ 1 + 1



Sequences

Definition : A sequence is a function from ℕ (or ℤ+) to a set S, 
denoted by 𝑎𝑛 where 𝑎𝑛 is the general term of the sequence.  

1, 4, 7, 10, 13, . . .       3𝑛 + 1

0, 1, 3, 7, 15, . . .         2𝑛 − 1

• 𝑎𝑛 =
1

𝑛
𝑎1 = 1, 𝑎2 =

1

2
, 𝑎3 =

1

3
, . . .

• 𝑎𝑛 =
1

3𝑛+2
𝑎0 =

1

2
, 𝑎1 =

1

5
, 𝑎2 =

1

11
, . . .



Sequences

Geometric Sequence :

𝑎, 𝑎𝑟, 𝑎𝑟2, . . ., 𝑎𝑟𝑛, . . .

initial
term

common
ratio

general 
term

𝑎𝑛 = −1 𝑛

1, −1, 1, −1, . . .

𝑎𝑛 = 2.3𝑛

2, 2.3, 2.9, 2.27, . . .

𝑎𝑛 = 3. (1/2)𝑛

3, 3/2, 3/4, 3/8, . . .



Sequences

Arithmetic Sequence :

𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, . . ., 𝑎 + 𝑛. 𝑑, . . .

initial
term

common
difference

general 
term

𝑎𝑛 = −1 + 8𝑛

−1, 7, 15, 23, . . .

𝑎𝑛 = 2 − 4𝑛

2, −2, −6, −10, . . .

𝑎𝑛 = 1 + 𝑛

1, 2, 3, 4, . . .



Summations
• σ𝑖=𝑚

𝑛 𝑎𝑖 = 𝑎𝑚 + 𝑎𝑚+1+ . . . +𝑎𝑛−1 + 𝑎𝑛

σ𝑖=0
∞ 𝑎𝑖 = 𝑎0 + 𝑎1+ . . . +𝑎𝑛+ . . .

σ𝑖=2
5 (𝑖2−1) = 4 − 1 + 9 − 1 + 16 − 1 + 25 − 1 = 50

• 𝑆 = 2, 3, 4 ,    σ𝑥∈𝑆 𝑥3 = 23 + 33 + 43 = 99

• σ 𝑐𝑓(𝑥) = 𝑐 σ 𝑓(𝑥)

σ(𝑓 𝑥 + 𝑔(𝑥)) = σ 𝑓 𝑥 + σ 𝑔 𝑥

σ𝑖=𝑚
𝑛 𝑓(𝑖) = σ𝑖=𝑚

𝑘 𝑓(𝑖) + σ𝑖=𝑘+1
𝑛 𝑓(𝑖)

• σ𝑖=1
𝑛 𝑖 = 1 + 2+ . . . +

𝑛

2
+

𝑛

2
+ 1 + . . . + 𝑛 − 1 + 𝑛

= n + 1 + n + 1 + . . . +(𝑛 + 1)

=
𝑛

2
n + 1



Summations
• 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, . . ., 𝑎 + 𝑛. 𝑑

σ𝑖=0
𝑛 (𝑎 + 𝑖𝑑) = σ𝑖=0

𝑛 𝑎 + σ𝑖=0
𝑛 𝑖𝑑

= σ𝑖=0
𝑛 𝑎 + 𝑑 σ𝑖=0

𝑛 𝑖

= 𝑛 + 1 𝑎 + 𝑑
𝑛(𝑛+1)

2

• 𝑎, 𝑎𝑟, 𝑎𝑟2, . . ., 𝑎𝑟𝑛

𝑆𝑛 = σ𝑖=0
𝑛 𝑎𝑟𝑖 → 𝑟𝑆𝑛 = 𝑟 σ𝑖=0

𝑛 𝑎𝑟𝑖 = σ𝑖=0
𝑛 𝑎𝑟𝑖+1

𝑟𝑆𝑛 = σ𝑖=1
𝑛+1 𝑎𝑟𝑖 = σ𝑖=1

𝑛 𝑎𝑟𝑖 + 𝑎𝑟𝑛+1

𝑟𝑆𝑛 = σ𝑖=0
𝑛 𝑎𝑟𝑖 + 𝑎𝑟𝑛+1 − 𝑎

𝑟𝑆𝑛 = 𝑆𝑛 + 𝑎𝑟𝑛+1 − 𝑎 → 𝑆𝑛 =
𝑎𝑟𝑛+1−𝑎

𝑟−1



Recurrence Relations

• sometimes the elements of the sequence are defined
recursively in terms of previous and the initial elements of
the sequence

𝑎0 = 1, 𝑎1 = 5, 𝑎2 = 13, 𝑎3 = 29, 𝑎4 = ?

𝑎1 = 2𝑎0 + 3 = 5
𝑎2 = 2𝑎1 + 3 = 13
𝑎3 = 2𝑎2 + 3 = 29
𝑎4 = 2𝑎3 + 3 = 61

Definition : an equation that express the general term of the
sequence in terms of previous terms. A sequence is called a
solution of a recurrence relation if its terms satisfy the
recurrence relation.



Recurrence Relations

• 𝑎𝑛+1 = 3𝑎𝑛,  𝑎0 = 5

𝑎1 = 15 = 3.5
𝑎2 = 75 = 3. 3.5
𝑎3 = 225 = 3. (3. 3.5 )

⋮
𝑎𝑛 = 3𝑛5 ; the unique solution of the given recurrence relation

• 𝑎𝑛+1 = 𝑑. 𝑎𝑛,  𝑎0 = 𝐴 where d is constant

the solution of the recurrence relation will be 𝑎𝑛 = 𝐴. 𝑑𝑛

• solve the recurrence relation 𝑎𝑛+1 = 7. 𝑎𝑛 where 𝑛 ≥ 1 and 𝑎2 = 98

𝑎2 = 𝐴. 72 → 98 = 𝐴. 49 → 𝐴 = 2

the solution is  𝑎𝑛 = 2. 7𝑛



Recurrence Relations
• 3 can be written as a sum of positive integers in 4 different ways:  

3
1 + 2
2 + 1

1 + 1 + 1

• In how many different ways can n be written as a sum of positive
integers ?

4
1 + 3
2 + 2

1 + 1 + 2

3 + 1
1 + 2 + 1
2 + 1 + 1

1 + 1 + 1 + 1

2
1 + 1

• 𝑎4 = 2. 𝑎3, 𝑎3 = 2. 𝑎2, and 𝑎2 = 2

𝑎𝑛+1 = 2. 𝑎𝑛, 𝑎1 = 1

create a new sequence 𝑏𝑛 = 𝑎𝑛+1

𝑏𝑛 = 2𝑏𝑛−1, 𝑏0 = 1; the solution will be  𝑏𝑛 = 2𝑛 ; thus 𝑎𝑛 = 2𝑛−1



Recurrence Relations
• 3 can be written as a sum of positive integers in 4 different ways:  

3
1 + 2
2 + 1

1 + 1 + 1

• In how many different ways can n be written as a sum of positive
integers ?

4
1 + 3
2 + 2

1 + 1 + 2

3 + 1
1 + 2 + 1
2 + 1 + 1

1 + 1 + 1 + 1

2
1 + 1

• 𝑎4 = 2. 𝑎3, 𝑎3 = 2. 𝑎2, and 𝑎2 = 2

𝑎𝑛+1 = 2. 𝑎𝑛, 𝑎1 = 1

create a new sequence 𝑏𝑛 = 𝑎𝑛+1

𝑏𝑛 = 2𝑏𝑛−1, 𝑏0 = 1; the solution will be  𝑏𝑛 = 2𝑛 ; thus 𝑎𝑛 = 2𝑛−1

first order linear homogeneous
recurrence relation



Recurrence Relations

• 𝑎𝑛+1 − 𝑑. 𝑎𝑛 = 0,  𝑎0 = 𝐴 where d is constant.

– first order since 𝑎𝑛+1 only depends on 𝑎𝑛 (the previous term)

– linear since each variable appears in the first power and there is 
no product such as 𝑎𝑛+1. 𝑎𝑛

– homogeneous since the right hand side is 0   

• The second order linear homogeneous recurrence relation :

𝐶0𝑎𝑛+1 + 𝐶1𝑎𝑛 + 𝐶2𝑎𝑛−1 = 0, 𝑎0 = 𝐴, 𝑎1 = 𝐵,  𝑛 ≥ 2

• The Fibonacci sequence:

𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1,  𝐹0 = 1,  𝐹2 = 1,  𝑛 ≥ 2



Recurrence Relations

• The second order linear homogeneous recurrence relation :

𝐶0𝑎𝑛+1 + 𝐶1𝑎𝑛 + 𝐶2𝑎𝑛−1 = 0, 𝑎0 = 𝐴, 𝑎1 = 𝐵,  𝑛 ≥ 2

𝑎𝑛+1 − 𝑑. 𝑎𝑛 = 0,  𝑎0 = 𝐴. the solution was in the form of 𝑎𝑛 = 𝐴. 𝑑𝑛

• Similarly, we look for a solution in the form of 𝑎𝑛 = 𝑐. 𝑟𝑛

If we place it in the equation:

𝐶0𝑐. 𝑟𝑛+1 + 𝐶1𝑐. 𝑟𝑛 + 𝐶2𝑐. 𝑟𝑛−1 = 0

𝐶0𝑟2 + 𝐶1𝑟 + 𝐶2 = 0 (characteristic equation) 

The solutions for the characteristic equation are called
characteristic roots; 𝑟1 and 𝑟2



Recurrence Relations

• 𝑎𝑛+1 + 𝑎𝑛 − 6𝑎𝑛−1 = 0, 𝑎0 = −1, 𝑎1 = 8,  𝑛 ≥ 2

𝑟2 + 𝑟 − 6 = 0 (characteristic equation)

𝑟1 = 2, 𝑟2 = −3 (characteristic roots)

the solution will be in the form of 𝑎𝑛 = 𝑐12𝑛 + 𝑐2(−3)𝑛.

𝑎0 = 𝑐120 + 𝑐2(−3)0 → −1 = 𝑐1 + 𝑐2

𝑎1 = 𝑐121 + 𝑐2(−3)1 → 8 = 2𝑐1 − 3𝑐2

𝑐1 + 𝑐2 = −1
2𝑐1 − 3𝑐2 = 8

𝑐1 = 1, 𝑐2 = −2

𝑎𝑛 = 2𝑛 − 2. (−3)𝑛



Recurrence Relations

• Suppose we have a 2xn chessboard and we wish to cover it 
using 2x1 and 1x2 dominoes. In how many different ways can 
we cover it ? 

. . .



Recurrence Relations

• Suppose we have a 2xn chessboard and we wish to cover it 
using 2x1 and 1x2 dominoes. In how many different ways can 
we cover it ? 

. . .

. . .

. . .

𝑏𝑛−1

𝑏𝑛−2

𝑏𝑛 = 𝑏𝑛−1+𝑏𝑛−2, 𝑛 ≥ 3

𝑏1 = 1 and 𝑏2 = 2



Recurrence Relations

• Suppose we have a 2xn chessboard and we wish to cover it 
using 2x1 and 1x2 dominoes. In how many different ways can 
we cover it ?

• 𝑏𝑛 = 𝑏𝑛−1+𝑏𝑛−2, 𝑛 ≥ 3, 𝑏1 = 1 and 𝑏2 = 2

𝑟2 − 𝑟 − 1 = 0 (characteristic equation)

𝑟1 =
1+ 5

2
, 𝑟2 =

1− 5

2
(characteristic roots)

the solution will be in the form of 𝑏𝑛 = 𝑐1(
1+ 5

2
)𝑛+𝑐2(

1− 5

2
)𝑛

𝑏0 = 𝑐1(
1+ 5

2
)0+𝑐2(

1− 5

2
)0→ 1 = 𝑐1 + 𝑐2

𝑏1 = 𝑐1(
1+ 5

2
)1+𝑐2(

1− 5

2
)1→ 2 =

1+ 5

2
𝑐1 + (

1− 5

2
)𝑐2

𝑐1 = 1/ 5, 𝑐2 = −1/ 5 𝑏𝑛 =
1

5
(
1 + 5

2
)𝑛−(

1 − 5

2
)𝑛



Recurrence Relations
• 3 can be written as a sum of positive integers in 4 different ways:  

3
1 + 2
2 + 1

1 + 1 + 1

• How many different palindromes can be found for a given 𝑛 ∈ ℤ+ ?

𝑏𝑛 = 2𝑏𝑛−2, 𝑛 ≥ 3, 𝑏1 = 1 and 𝑏2 = 2

𝑟2 − 2 = 0 (characteristic equation)

𝑟1 = 2, 𝑟2 = − 2 (characteristic roots)

the solution will be in the form of 𝑏𝑛 = 𝑐1( 2)𝑛+𝑐2(− 2)𝑛

𝑏0 = 𝑐1( 2)0+𝑐2(− 2)0→ 1 = 𝑐1 + 𝑐2

𝑏1 = 𝑐1( 2)1+𝑐2(− 2)1→ 2 = 2 𝑐1 + (− 2)𝑐2

palindrome
they are read
the same from
left to right, 
right to left

𝑏𝑛 = (
1

2
+

1

2 2
)( 2)𝑛+(

1

2
−

1

2 2
) − 2

𝑛


