Mathematical Induction

Murat Osmanoglu

Definition

- To prove $P(n)$ is true for all positive integers n,
- verify that $P(1)$ is true (Basic Step)
- prove that the implication $P(k) \rightarrow P(k+1)$ for all $k \in Z^{+}$(Inductive Step)
$[P(1) \wedge \forall k P(k) \rightarrow P(k+1)] \rightarrow \forall n P(n)$

Proofs

- Prove that $\forall x \in Z^{+}, x^{3}-x$ is divisible by 3

Basic Step $P(1): 1^{3}-1=0$ is divisible by 3
Inductive Step $P(k) \rightarrow P(k+1)$
assume that $P(k)$ is true, i.e $k^{3}-k$ is divisible by 3

$$
\begin{aligned}
{\left[k^{3}-k=3 a, \exists a \in \mathbb{Z}\right] } & \rightarrow(k+1)^{3}-(k+1)=k^{3}+3 k^{2}+3 k+1-k-1 \\
& \rightarrow(k+1)^{3}-(k+1)=k^{3}+3 k^{2}+3 k-k \\
& \rightarrow(k+1)^{3}-(k+1)=k^{3}-k+3 k^{2}+3 k \\
& \rightarrow(k+1)^{3}-(k+1)=k^{3}-k+3\left(k^{2}+k\right) \\
& \rightarrow(k+1)^{3}-(k+1)=3 a+3 b, \exists a, b \in \mathbb{Z} \\
& \rightarrow(k+1)^{3}-(k+1) \text { is divisible by } 3
\end{aligned}
$$

Proofs

- Prove that $\forall n \in N, 7^{n+2}+8^{2 n+1}$ is divisible by 57

Basic Step $P(0): 7^{2}+8=57$ is divisible by 57
Inductive Step $P(k) \rightarrow P(k+1)$
assume that $P(k)$ is true, i.e $7^{k+2}+8^{2 k+1}$ is divisible by 57

$$
\begin{aligned}
{\left[7^{k+2}+8^{2 k+1}=57 a, \exists a \in \mathbb{Z}\right] } & \rightarrow 7^{k+3}+8^{2 k+3}=7.7^{k+2}+64.8^{2 k+1} \\
& \rightarrow 7^{k+3}+8^{2 k+3}=7.7^{k+2}+7.8^{2 k+1}+57.8^{2 k+1} \\
& \rightarrow 7^{k+3}+8^{2 k+3}=7\left(7^{k+2}+8^{2 k+1}\right)+57.8^{2 k+1} \\
& \rightarrow 7^{k+3}+8^{2 k+3}=57 a+57 b, \exists a, b \in \mathbb{Z} \\
& \rightarrow 7^{k+3}+8^{2 k+3} \text { is divisible by } 57
\end{aligned}
$$

Proofs

- Prove that if $\forall n \in Z^{+}$, then $1+2+\ldots+n=n .(n+1) / 2$

Basic Step $P(1): 1=1.2 / 2$
Inductive Step $P(k) \rightarrow P(k+1)$
assume that $\mathrm{P}(\mathrm{k})$ is true, i.e $1+2+\ldots+k=k .(k+1) / 2$

$$
\begin{aligned}
{[1+2+\ldots+k=k \cdot(k+1) / 2] } & \rightarrow\left[1+2+\ldots+(k+1)=k \cdot \frac{k+1}{2}+k+1\right] \\
& \rightarrow\left[1+2+\ldots+(k+1)=\frac{k(k+1)+2(k+1)}{2}\right] \\
& \rightarrow\left[1+2+\ldots+(k+1)=\frac{(k+1)(k+2)}{2}\right]
\end{aligned}
$$

Proofs

Conjecture a formula for the sum of the first n positive odd integers, then prove your conjecture using mathematical induction

- $1=1 \quad 1+3=4 \quad 1+3+5=9 \quad 1+3+5+9=16$
1^{2} 2^{2}
3^{2}
4^{2}
$1+3+\ldots+(2 n-1)=n^{2}$
Basic Step $\mathrm{P}(1): 1=1^{2}$
Inductive Step $P(k) \rightarrow P(k+1)$
assume that $\mathrm{P}(\mathrm{k})$ is true, i.e $1+2+\ldots+(2 k-1)=k^{2}$
$\left[1+2+\ldots+(2 k-1)=k^{2}\right] \rightarrow\left[1+2+\ldots+(2 k-1)+(2 k+1)=k^{2}+2 k+1\right]$

$$
\rightarrow\left[1+2+\ldots+(2 k-1)+(2 k+1)=(k+1)^{2}\right]
$$

Proofs

- Prove that if $\forall n \in \mathbb{N}$, then $1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$

Basic Step P(1): $1=2^{0+1}-1$
Inductive Step $P(k) \rightarrow P(k+1)$
assume that $\mathrm{P}(\mathrm{k})$ is true, i.e $1+2+2^{2}+\ldots+2^{k}=2^{k+1}-1$
$\left[1+2+2^{2}+\ldots+2^{k}=2^{k+1}-1\right] \rightarrow\left[1+2+2^{2}+\ldots+2^{k}+2^{k+1}=2^{k+1}-\right.$

Proofs

- Prove that for every integer $n \geq 4,2^{n}<n$!

Basic Step P(4): $2^{4}=16<4!=24$
Inductive Step $P(k) \rightarrow P(k+1)$ assume that $\mathrm{P}(\mathrm{k})$ is true, i.e $2^{k}<k$!

$$
\begin{aligned}
{\left[2^{k}<k!\right] \rightarrow\left[2^{k+1}=2.2^{k}<2 . k!\right] } & \rightarrow\left[2^{\mathrm{k}+1}<2 . \mathrm{k}!<(\mathrm{k}+1) . \mathrm{k}!\right] \\
& \rightarrow\left[2^{k+1}<(k+1)!\right]
\end{aligned}
$$

Proofs

$$
H_{j}=1+\frac{1}{2}+\ldots+\frac{1}{j}
$$

- Prove that $H_{1}+H_{2}+\ldots+H_{n}=(n+1) H_{n}-n$ Basic Step $P(1):\left[H_{1} \stackrel{2}{=} 2 . H_{1}-1\right] \rightarrow[1=2-1]$
Inductive Step $P(k) \rightarrow P(k+1)$
assume that $\mathrm{P}(\mathrm{k})$ is true, i.e $H_{1}+\ldots+H_{k}=(k+1) H_{k}-k$

$$
\begin{aligned}
{\left[H_{1}+\ldots+H_{k}=(k+\right.} & \left.1) H_{k}-k\right] \rightarrow\left[H_{1}+\ldots+H_{k}+H_{k+1}=(k+1) H_{k}-k+H_{k+1}\right] \\
& \rightarrow\left[H_{1}+\ldots+H_{k+1}=(k+1)\left(H_{k}-\frac{1}{k+1}+\frac{1}{k+1}\right)-k+H_{k+1}\right] \\
& \rightarrow\left[H_{1}+\ldots+H_{k+1}=(k+1)\left(H_{k+1}-\frac{1}{k+1}\right)-k+H_{k+1}\right] \\
& \rightarrow\left[H_{1}+\ldots+H_{k+1}=(k+1) H_{k+1}-1-k+H_{k+1}\right] \\
& \rightarrow\left[H_{1}+\ldots+H_{k+1}=(k+2) H_{k+1}-(k+1)\right]
\end{aligned}
$$

Proofs

- For every integer $n \geq 14, n$ can be written as a sum of 3's and 8's

$$
\begin{aligned}
& 19=3+8+8=1.3+2.8 \\
& 20=3+3+3+3+8=4.3+1.8
\end{aligned}
$$

Basic Step P(4):14=2.3+1.8
Inductive Step $P(k) \rightarrow P(k+1)$
assume that $\mathrm{P}(\mathrm{k})$ is true, i.e $k=a .3+b .8, \exists a, b \in N$

$$
\text { if } \begin{aligned}
b>0, & k+1= \\
k+1= & a \cdot 3+b \cdot 8+1 \\
k+1= & (a+3)(b-1) \cdot 8+8+1 \\
& P(k-8)
\end{aligned}
$$

$$
\text { if } b=0, k+1=a .3+1
$$

$$
k+1=(a-5) \cdot 3+15+1
$$

$$
k+1=(a-5) \cdot 3+2.8
$$

$$
P(k-15)
$$

$$
[P(k-8) \wedge P(k-15)] \rightarrow P(k+1)
$$

Strong Induction

- To prove $P(n)$ is true for all positive integers n,
- verify that $P(1)$ is true (Basic Step)
- prove that the implication
$[P(1) \wedge P(2) \wedge \ldots \wedge P(k)] \rightarrow P(k+1)$
for all $k \in Z^{+}$(Inductive Step)

Strong Induction

- Prove that for every integer $n \geq 2, n$ can be written as the product of primes

Basic Step $P(2)$ is true, i.e. 2 can be written as the product of primes
Inductive Step $[P(1) \wedge \ldots \wedge P(k)] \rightarrow P(k+1)$
assume that $\mathrm{P}(\mathrm{i})$ is true for all i such that $2 \leq i \leq k$, i.e i can be written as the product of primes, then
if $(k+1)$ is prime, then $P(k+1)$ is true
if $(k+1)$ is composite, then $k+1=a . b$, where $2 \leq a \leq b<k+1$. Since $a, b<k+1, P(a)$ and $P(b)$ are true from the assumption, i.e. a and b can be written as the product of primes. Thus, $k+1=a . b$ can also be written as the product of primes.

Strong Induction

- Consider a puzzle. How do we assemble a puzzle?

- Show that no matter which move we make, n-1 noves required to assemble a puzzle with n pieces.
Basic Step $P(1)$ is true, i.e. no move required for just 1 piece
Inductive Step $[P(1) \wedge \ldots \wedge P(k)] \rightarrow P(k+1)$ assume that $\mathrm{P}(\mathrm{i})$ is true for all i such that $2 \leq i \leq k$, i.e a puzzle with i pieces can be assembled with i-1 moves

Strong Induction

- Prove that for every integer $n \geq 3, \mathrm{~F}(n)>\alpha^{n-2}$ where $\alpha=(1+\sqrt{5}) / 2$

Fibonacci sequence: $\mathrm{F}(1)=1, F(2)=1$, and $F(n)=F(n-1)+F(n-2)$
Basic Step $P(3): F(3)=2>\alpha^{3-2}=(1+\sqrt{5}) / 2$
Inductive Step $[P(1) \wedge \ldots \wedge P(k)] \rightarrow P(k+1)$
assume that $\mathrm{P}(\mathrm{i})$ is true for all i such that $2 \leq i \leq k$, i.e $\mathrm{F}(i)>\alpha^{i-2}$
for $P(k+1): \mathrm{F}(k+1)=\mathrm{F}(k)+\mathrm{F}(k-1)>\alpha^{i-2}+\alpha^{i-3}$

$$
\begin{aligned}
& =\alpha \cdot \alpha^{i-3}+\alpha^{i-3} \\
& =(\alpha+1) \cdot \alpha^{i-3}=\alpha^{2} \cdot \alpha^{i-3}
\end{aligned}
$$

$$
\mathrm{F}(k+1)>\alpha^{i-1}
$$

$\alpha=\frac{1+\sqrt{5}}{2}$ is a solution of the equation $\alpha^{2}-\alpha-1=0$. Thus, $\alpha^{2}=\alpha+1$

Proofs

Conjecture a formula for the sum of the squares of the first n terms in Fibonacci sequence, then prove your conjecture using mathematical induction

- $F(1)^{2}=1, F(1)^{2}+F(2)^{2}=2, F(1)^{2}+F(2)^{2}+F(3)^{2}=6$,
$F(1)^{2}+F(2)^{2}+F(3)^{2}+F(4)^{2}=15$,
$F(1)^{2}+F(2)^{2}+F(3)^{2}+F(4)^{2}+F(5)^{2}=40$,
1.1
1.2
2.3
3.5
5.8
- $\quad \sum_{j=1}^{n} F(j)^{2}=F(n) \cdot F(n+1)$, where $n \geq 2$

Basic Step $\mathrm{P}(2): F(1)^{2}+F(2)^{2}=2=\mathrm{F}(2) \cdot \mathrm{F}(3)$
Inductive Step $P(k) \rightarrow P(k+1)$
assume that $P(i)$ is true for all i such that $2 \leq i \leq k$, i.e. $\sum_{j=1}^{i} F(j)^{2}=F(i) . F(i+1)$ for $P(k+1): F(1)^{2}+\cdots+F(k)^{2}+F(k+1)^{2}=F(k) . F(k+1)+F(k+1)^{2}$

$$
\begin{aligned}
& =F(k+1)(F(k)+F(k+1)) \\
& =F(k+1) F(k+2)
\end{aligned}
$$

Proofs

Conjecture a formula for the sum of the squares of the first n terms in Fibonacci sequence, then prove your conjecture using mathematical induction

- $F(1)^{2}=1, F(1)^{2}+F(2)^{2}=2, F(1)^{2}+F(2)^{2}+F(3)^{2}=6$,
$F(1)^{2}+F(2)^{2}+F(3)^{2}+F(4)^{2}=15$,
$F(1)^{2}+F(2)^{2}+F(3)^{2}+F(4)^{2}+F(5)^{2}=40$,
1.1
1.2
2.3
3.5
5.8
- $\quad \sum_{j=1}^{n} F(j)^{2}=F(n) \cdot F(n+1)$, where $n \geq 2$

Basic Step $\mathrm{P}(2): F(1)^{2}+F(2)^{2}=2=\mathrm{F}(2) \cdot \mathrm{F}(3)$
Inductive Step $P(k) \rightarrow P(k+1)$
assume that $P(i)$ is true for all i such that $2 \leq i \leq k$, i.e. $\sum_{j=1}^{i} F(j)^{2}=F(i) . F(i+1)$ for $P(k+1): F(1)^{2}+\cdots+F(k)^{2}+F(k+1)^{2}=F(k) . F(k+1)+F(k+1)^{2}$

$$
\begin{aligned}
& =F(k+1)(F(k)+F(k+1)) \\
& =F(k+1) F(k+2)
\end{aligned}
$$

Proofs

- Let's recursively define a set:

Basic Step $3 \in S$

Inductive Step if $x \in S$ and $y \in S$, then $x+y \in S$

$$
3+3=6 \in S, 3+6=9 \in S, \ldots
$$

- If A is the set of all positive integers that are divisible by $3, A \stackrel{?}{=} S$
($A \subseteq S$: every positive integer that is divisible by 3 is in S)
$P(n)$: '3n belongs to S^{\prime}
Basic Step 3.1 $=3 \in S$
Inductive Step $P(k) \rightarrow P(k+1)$
assume that $P(k)$ is true, i.e. $3 k$ belongs to $S \rightarrow 3 k+3$ also belongs to S
($S \subseteq A$: every element of S is divisible by 3)
$P(n): ~ ' n \in S$ is divisible by 3^{\prime}
Basic Step 3|3
Inductive Step $[P(1) \wedge \ldots \wedge P(k)] \rightarrow P(k+1)$
assume that $P(i)$ is true for all $1 \leq i \leq k$, then $k+1=x+y$ where $x, y \leq k$
Since $P(x)$ and $P(y)$ assumed to be true, $P(k+1)$ is also true

