
Graphs

Graph Theory

• Königsberg was a city in Germany in 18th century. There
was a river named Pregel that divided the city into four
distinct regions.

• There was a natural question for the people of Königberg :

‘Is it possible to take a walk around the city that crosses
each bridge exaactly once?’

Graph Theory

• The problem was solved by Swiss mathematician Leonard
Euler. His works are considered as the beginning of Graph
Theory.

• Euler represented four distinct lands with four points (or
nodes), and seven bridges with seven lines connecting those
points.

‘Can you find a path that includes every edge exactly once?’
‘Is the given graph traversable?’

Graph Theory

G = (V, E)

set of nodes (or vertices) set of edges (or arc)

1

3

2

4

5

• 𝑉 = 1, 2, 3, 4, 5

• 𝐸 ⊆ 𝑉 × 𝑉

(1, 2) ∈ 𝐸

starting node ending node

• 𝐸 = { 1, 2 , 2, 4 , 4, 3 , 1, 4 , (3, 5)
2, 1 , 4, 2 , 3, 4 , 4, 1 , (5, 3)}

• If (1, 2) ∈ 𝐸, 1 and 2 are adjacent vertices.

• adj(4) = {1, 2, 3}

Graph Theory

G = (V, E)

set of nodes (or vertices) set of edges (or arc)

1

3

2

4

4

3

2

5

15

directed graphundirected graph

deg(v)= # of edges at that vertex

deg(1)=2

deg(4)=3

Graph Theory

G = (V, E)

set of nodes (or vertices) set of edges (or arc)

1

3

2

4

4

3

2

5

15

directed graphundirected graph

deg(v)= # of edges at that vertex degin (v) = # of incoming edges

degout (v) = # of outgoing edges

degin(5) = 1

degout(4) = 2

Graph Theory

G = (V, E)

set of nodes (or vertices) set of edges (or arc)

1

3

2

4

4

3

2

5

15

directed graphundirected graph

deg(v)= # of edges at that vertex

Σ deg(v) = 2 lEl

degin (v) = # of incoming edges

degout (v) = # of outgoing edges

Σ degin(v) = Σ degout(v) = lEl
• a vertex v is called odd vertex if deg(v) is odd
• a vertex v is called even vertex if deg(v) is even

Graph Theory

Complete Graphs

Cycle Graphs

𝐾1 𝐾2 𝐾3 𝐾4 𝐾5

𝐶3 𝐶4 𝐶5

Graph Theory
• a subgraph of a graph G = (V, E) is a graph H = (W, F) such that

W⊆V and F ⊆ E.

𝐾5 𝐺1 ⊆𝐾5
𝐺2 ⊆𝐾5

𝐺2 ⊆𝐺1

𝐺3 ⊆𝐾5

𝐺3 ⊆𝐺2

• the subgraph induced by a subset W of the vertex set V is the
graph (W, F) where the edge set F contains an edge in E if and
only if both starting node and ending node of this edge are in W.

𝐾5 = (𝑉, 𝐸)

a

b

c d

e

a

b

c d

the subgraph induced by
W={a, b, c, d}

this subgraph produced by
removing the edge e

𝐻 = {𝑎, 𝑏, 𝑐, 𝑑}

Graph Theory

a

b

c
d

𝐺1 = (𝑉1, 𝐸1)

e

f
b

d

𝐺2 = (𝑉2, 𝐸2)

e

f
b

d

a

c

𝐺1 ∪ 𝐺2 = (𝑉1 ∪ 𝑉2, 𝐸1 ∪ 𝐸2)

1

3

2

4

4

3

2

1

Adjacency List Adjacency List

1 - 2,4
2 - 1,4
3 - 4
4 - 1,2,3

1 - 3
2 -
3 - 4
4 - 1,2

Adjacency Matrix Adjacency Matrix

1 2 3 4

1 0 1 0 1

2 1 0 0 1

3 0 0 0 1

4 1 1 1 0

1 2 3 4

1 0 0 1 0

2 0 0 0 0

3 0 0 0 1

4 1 1 0 0

Representation

Adjacency List

• retrieving all neighbors of a
given node u

• given nodes u and v, checking
if u and v are adjacent

• space

Adjacency Matrix

If graph is sparse, use adjacency list;
if graph is dense, use adjacency matrix

O(deg(u))

O(deg(u))

O(lEl+lVl)

O(lVl)

O(1)

O(lVl2)

Representation

• Two simple graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) are isomorphic if
there exists a bijection f from 𝑉1 to 𝑉2 such that a and b are
adjacent in 𝐺1 if and only if f(a) and f(b) are adjacent in 𝐺2 for all
𝑎, 𝑏 ∈ 𝑉1

a

c
b

d

1

2

3

4

𝐺1 = (𝑉1, 𝐸1) 𝐺2 = (𝑉2, 𝐸2)

• f : 𝑉1 → 𝑉2, f(a) = 1, f(b) = 4, f(c) = 3, f(d) = 2

a and c are adjacent in 𝐺1, f(a) = 1 and f(c) = 3 are adjacent in 𝐺2

a and d are adjacent in 𝐺1, f(a) = 1 and f(d) = 2 are adjacent in 𝐺2

b and d are adjacent in 𝐺1, f(b) = 4 and f(d) = 2 are adjacent in 𝐺2

Isomorphism

• Isomorphic graphs must have same number of edges

• The degrees of the vertices in isomorphic graphs must be same

a

cb

d

• G and H both have 5 vertices and 6 edges

• G has 3 vertices of degree two and 2 vertices of degree three
H has 1 vertex of degree one, 2 vertices of degree two, 1 vertex of

degree three, and 1 vertex of degree 4

e

a

cb

de
G H

Isomorphism

Isomorphism

• Isomorphic graphs must have same number of edges

• The degrees of the vertices in isomorphic graphs must be same

a

c

b

d

• G and H both have 8 vertices and 10 edges

• G has 4 vertices of degree two and 4 vertices of degree three
H has 4 vertices of degree two and 4 vertices of degree three

• One of the odd vertices (s) in H has 2 adjacent odd vertices (w and x)
We don’t have such case in G

e

G H

f

gh

x

z

t

y

s u

v
w

1

3

2

4

5
5, 3, 4, 1 is a simple path in G

G

• a path in a graph is a sequence of nodes v1, v2, …, vk such that
(vi, vj) is an edge in the graph.
a path is simple if all nodes are distinct

Connectivity

1

3

2

4

5

G

4, 1, 2, 4 is a simple cycle in G

• a path in a graph is a sequence of nodes v1, v2, …, vk such that
(vi, vj) is an edge in the graph.
a path is simple if all nodes are distinct

• nodes u and v are called connected if there is a path between
them. A graph is connected if there is a path between every pair
of nodes

• a cycle is a path v1, v2, …, vk such that v1 = vk . A cycle is simple if
first k-1 nodes are distinct

Connectivity

1

3

2

4

5

G

4, 1, 2, 4 is a simple cycle with length 3

• a path in a graph is a sequence of nodes v1, v2, …, vk such that
(vi, vj) is an edge in the graph.
a path is simple if all nodes are distinct

• nodes u and v are called connected if there is a path between
them. A graph is connected if there is a path between every pair
of nodes

• a cycle is a path v1, v2, …, vk such that v1 = vk . A cycle is simple if
first k-1 nodes are distinct

• length of a path is the number of edges in the path

Connectivity

• Given 𝐺 = (𝑉, 𝐸) and 𝐻 ⊆ 𝐺, if there is no proper subgraph U of G (𝑈 ⊂
𝐺) such that 𝐻 ⊆ 𝑈, H is called a maximal subgraph of G.

• a connected component is a maximal subgraph where there is a path
between any two nodes of it

• a graph can be made up of seperate connected components

G

Connectivity

• Consider a vertex v of a given graph 𝐺 = (𝑉, 𝐸), if removing v and all
its inncident edges from the graph produces a subgraph with more
connected components, v is called cut vertex (or cut vertices)

• Similarly, if removing an edge from a graph creates a subgraph with
more connected components, it’s called cut edge

a

cb

d

e

f

b

c e

gf

h

a

d

G H
cut vertices : {b, c, f}
cut edges : {(b, f), (c, b)} cut vertices : {c}

cut edges : { }

Connectivity

• A subset W of the vertex set V of 𝐺 = 𝑉, 𝐸 is called a vertex cut
or separating set, if G – W is disconnected

• Similarly, a subset F of the edge set E of 𝐺 = 𝑉, 𝐸 is called a edge
cut, if G – F is disconnected

a

cb

d

e

f

b

c e

gf

a d

G
H

vertex cut: {b, c} or {f, e}
edge cut: {(b, f), (c, e)} or {(a, c), (a, b)}

no cut vertex and no cut edge

vertex cut: {c}
edge cut: {(d, c), (c, e)}

no cut edge

Connectivity

• A subset W of the vertex set V of 𝐺 = 𝑉, 𝐸 is called a vertex cut
or separating set, if G – W is disconnected

• Similarly, a subset F of the edge set E of 𝐺 = 𝑉, 𝐸 is called a edge
cut, if G – F is disconnected

a

cb

d

e

f

b

c e

gf

a d

G
H

vertex cut: {b, c} or {f, e}
edge cut: {(b, f), (c, e)} or {(a, c), (a, b)}

no cut vertex and no cut edge

vertex cut: {c}
edge cut: {(d, c), (c, e)}

no cut edge

κ(𝐺): minimum number of vertices in a vertex cut
λ(𝐺): minimum number of edges in a edge cut

κ 𝐺 = 2
λ 𝐺 = 2

κ 𝐺 = 1
λ 𝐺 = 2

κ(𝐺) ≤ λ(𝐺)≤𝑚𝑖𝑛𝑣∈𝑉deg(𝑣)

Connectivity

• Isomorphic graphs must have same number of edges

• The degrees of the vertices in isomorphic graphs must be same

• They must have same amount of simple circuits of length k

G H

a

c

b

de

f

1

3

2

45

6

• G and H both have 6 vertices and 8 edges

• G has 2 vertices of degree two and 4 vertices of degree three
H has 2 vertices of degree two and 4 vertices of degree three

• G has two simple circuits of length three; however, H has no simple
circuit of length three

Isomorphism

a b

c d

• How many paths of length two from a to c ?

a, b, c or a, d, c

• For a given graph 𝐺 = 𝑉, 𝐸 , what are the number of
different paths of length k from one vertex to
another one ?

Connectivity

• Given a graph 𝐺 = 𝑉, 𝐸 together with the adjacency matrix A, the number of
different paths of length m from 𝑣𝑖to 𝑣𝑗 will be the (i, j)-th entry of 𝐴𝑚

Basis Step (𝑘 = 1) For 𝐴 = 𝑎𝑖𝑗 , 𝑎𝑖𝑗 will be the number of different path of length 1 from
𝑣𝑖to 𝑣𝑗 (true)

Inductive Step Assume it’s true for k, i.e. the number of different paths of length k
from 𝑣𝑖to 𝑣𝑗 will be the (i, j)-th entry of 𝐴𝑘 .

For 𝑘 + 1, 𝐴𝑘+1 = 𝐴𝑘 . 𝐴

𝐴𝑘+1 =
𝑏11 ⋯ 𝑏1𝑛

⋮ ⋱ ⋮
𝑏𝑛1 ⋯ 𝑏𝑛𝑛

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

𝑐𝑖𝑗 = 𝑏𝑖1. 𝑎1𝑗 + 𝑏𝑖2. 𝑎2𝑗+. . . +𝑏𝑖𝑛. 𝑎𝑛𝑗

𝑣𝑖 𝑣𝑗

𝑣𝑢

𝑣𝑢

𝑣𝑢

𝑐𝑖𝑗 : the number of different paths of
length (k+1) from 𝑣𝑖 to 𝑣𝑗

• Euler circuit is a simple circuit that contains every edge of G.

• Euler path is a simple path that contains every edge of G

• Does this graph have an Euler path or Euler circuit?

Euler Paths and Circuits

Euler Paths and Circuits

.
s ti

• when you pass a vertex, you add two to the degree of it.

• the degree of starting node and ending node just one or odd number

• the graph has a Euler path or Euler circuit if if it has no odd vertex
or exactly two odd vertices.

Euler Paths and Circuits

.
s ti

• when you pass a vertex, you add two to the degree of it.

• the degree of starting node and ending node just one or odd number

• the graph has a Euler path or Euler circuit if if it has no odd vertex
or exactly two odd vertices.

Euler Paths and Circuits

A

B C

D

EF

A

B
C

D

EF

G

F–B–A–C-B-D-F-E-D-C-E
F–B–D–E-G-C-E-F-D-C-A-B-C

Hamilton Paths and Circuits
• Hamilton circuit is a simple circuit that contains every vertex

of G exactly once except the starting vertex.

• Hamilton path is a simple circuit that contains every vertex of
G exactly once

a b

c d
G

• Does G contain a Hamilton path or
circuit ?

a – b – c – d

no Hamilton circuit

• There is no easy way to determine a given graph has a Hamilton
circuit or Hamilton path

a graph with a vertex of degree one cannot have a Hamilton circuit

A
B

D

E

C
8

22

16

14

4

10
5

• given a weighted graph G=(V,E) and a source vertex s in
V, find the shortest path from s to every other vertex
in V

SSSP

A

D
18 E

19

C
15

8

4

10
5

• given a weighted graph G=(V,E) and a source vertex s in
V, find the shortest path from s to every other vertex
in V

10
B

shortest-paths tree

SSSP

• given a weighted graph G=(V,E) and a source vertex s in
V, find the shortest path from s to every other vertex
in V

• Three cases :

o the weight of each edge fixed as 1
--BFS--

o the weight of each edge non-negative
--Dijkstra—

o the weight of each can be negative
--Belmann/Ford--

SSSP

Relaxation

• For each vertex v in V, initialize two parameters :

o parent pointer – indicates the predecessor of the
vertex in the shortest path from s to v

o distance – indicates the shortest-path estimate
from vertex to the source

Initialize (G, s)

for each vertex v i V
v.dis = ∞
v.par = nil

s.dis = 0

Relaxation

• relaxing an edge (u,v) : testing whether the shortest
path to the vertex v can be improved by going through
the vertex u

Relax(u, v)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

s

u
8

v
12

3

v.dis > u.dis + w(u,v)
12 > 8 + 3

v.dis = u.dis + w(u,v)
v.dis = 11
v.par = u

Relaxation

• Let δ(s,v) be the weight of the shortest path from
source to the vertex v (after the termination of the
program)

• For any edge (u,v) in E,

δ(s,v) ≤ δ(s,u) + w(u,v)

• For all vertices v in V,

v.dis ≥ δ(s,v)

• If there is no path from s to v, then

v.dis = δ(s,v) = ∞

s

u

v

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

Initialize(G,s)
O(lVl)

O(lEl.loglVl)

O(lVl)

O(lVl.loglVl)

Relax(u,v)
O(1)

Dijkstra’s Algorithm

A B

C

D

E

F

G H

5

7

8

43

9

3

6
4

6

Dijkstra’s Algorithm

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

A B

C

D

E

F

G H

5

7

8

43

9

3

6
4

6

0

∞
∞

∞

∞

∞

∞

∞

H F G E D C B A

Dijkstra’s Algorithm

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

S = { }

A B

C

D

E

F

G H

5

7

8

43

9

3

6
4

6

0

∞
∞

∞

∞

∞

∞

∞

F G E D C B A

Dijkstra’s Algorithm

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

S = {H}

A B

C

D

E

F

G H

5

7

8

43

9

3

6
4

6

0

∞
∞

∞

6

4

∞

9

F G E D C B A

Dijkstra’s Algorithm

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

S = {H}

A B

C

D

E

F

G H

5

7

8

43

9

3

6
4

6

0

∞
∞

∞

6

4

∞

9

G E D C B A

Dijkstra’s Algorithm

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

S = {H,F}

A B

C

D

E

F

G H

5

7

8

43

9

3

6
4

6

0

∞
∞

∞

6

4

∞

7

G E D C B A

Dijkstra’s Algorithm

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

S = {H,F}

A B

C

D

E

F

G H

5

7

8

43

9

3

6
4

6

0

∞
∞

∞

6

4

∞

7

E D C B A

Dijkstra’s Algorithm

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

S = {H,F,G}

A B

C

D

E

F

G H

5

9

8

43

9

3

6
4

6

0

∞
∞

12

6

4

∞

7

E D C B A

Dijkstra’s Algorithm

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

S = {H,F,G}

A B

C

D

E

F

G H

5

9

8

43

9

3

6
4

6

0

∞
∞

12

6

4

∞

7

D C B A

Dijkstra’s Algorithm

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

S = {H,F,G,E}

A B

C

D

E

F

G H

5

9

8

43

9

3

6
4

6

0

15
∞

12

6

4

11

7

D C B A

Dijkstra’s Algorithm

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

S = {H,F,G,E}

A B

C

D

E

F

G H

5

9

8

43

9

3

6
4

6

0

15
∞

12

6

4

11

7

D B A

Dijkstra’s Algorithm

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

S = {H,F,G,E,C}

A B

C

D

E

F

G H

5

9

8

43

9

3

6
4

6

0

15
∞

12

6

4

11

7

B A

Dijkstra’s Algorithm

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

S = {H,F,G,E,C}

A B

C

D

E

F

G H

5

9

8

43

9

3

6
4

6

0

15
21

12

6

4

11

7

B A

Dijkstra’s Algorithm

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

S = {H,F,G,E,C,D}

A B

C

D

E

F

G H

5

9

8

43

9

3

6
4

6

0

15
21

12

6

4

11

7

A

Dijkstra’s Algorithm

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

S = {H,F,G,E,C,D,B}

A B

C

D

E

F

G H

5

9

8

43

9

3

6
4

6

0

15
20

12

6

4

11

7

A

Dijkstra’s Algorithm

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

S = {H,F,G,E,C,D,B}

A B

C

D

E

F

G H

5

8

4

3

6
4

6

0

15
20

12

6

4

11

7

Dijkstra’s Algorithm

Dijkstra(G,s)

for each u of V
u.key = ∞
u.par = nil

s.key = 0
initialize an empty set S
create a minimum priority Q on V
while Q ≠ { }

u = ExtractMin(Q)
S = S ∪ {u}
for each v of Adj(u)

if v.dis > u.dis + w(u,v)
v.dis = u.dis + w(u,v)
v.par = u

update Q

S = {H,F,G,E,C,D,B,A}

a

b

c

d

• a simple graph G is called bipartite if its vertex set V can be
partitioned into two disjoint subsets 𝑉1 and 𝑉2 such that every
edge in the graph connects a vertex in 𝑉1 and a vertex in 𝑉2

(there is no edge (a,b) such that a and b are elements of same
partition)

Bipartite Graphs

e

f

g

𝐾5

a

b

cd

e

G

𝐾2,3 𝐾3,3

a b

cd

• a graph G is called planar if it can be drawn in the plane without
any edge crossing.

this drawing is called planar representation of the graph

Planar Graphs

f

g𝑄3

a b

c
d

e

𝐾4

a b

cd

𝐾4 h

a b

cd

fe

gh

𝑄3

𝐾3,3

a e

bd

a b c

d e f
f

c

• 𝐾3,3 cannot be drawn as planar graph

Euler Formula : Let G be connected simple graph with e
edges and v vertices. Let r be the number of region in a
planar representation of G. Then,

r = e – v + 2

6 = 12 − 8 + 2

1 2 3

4

5

6

Graph Coloring

• a coloring of a simple graph is the assigntment of a color to each
vertex so that no two adjacent vertices are assigned the same color

Graph Coloring

𝐾5

G

𝐶5 𝐶6

• a coloring of a simple graph is the assigntment of a color to each
vertex so that no two adjacent vertices are assigned the same color

Graph Coloring

𝐾5

G

𝐶5 𝐶6

• a coloring of a simple graph is the assigntment of a color to each
vertex so that no two adjacent vertices are assigned the same color

Graph Coloring

𝐾4

G

𝐶5 𝐶6χ 𝐶5 = 3 χ 𝐶6 = 2

χ 𝐺 = 3 (chromatic number) χ 𝐾4 = 4

