Graphs

Graph Theory

- Königsberg was a city in Germany in 18th century. There was a river named Pregel that divided the city into four distinct regions.
- There was a natural question for the people of Königberg :
'Is it possible to take a walk around the city that crosses each bridge exaactly once?'

Graph Theory

- The problem was solved by Swiss mathematician Leonard Euler. His works are considered as the beginning of Graph Theory.
- Euler represented four distinct lands with four points (or nodes), and seven bridges with seven lines connecting those points.
'Can you find a path that includes every edge exactly once?'
'Is the given graph traversable?'

Graph Theory

$$
G=(V, E)
$$

set of nodes (or vertices) set of edges (or arc)

- If $(1,2) \in E, 1$ and 2 are adjacent vertices.
- $\operatorname{adj}(4)=\{1,2,3\}$

Graph Theory

$$
G=(V, E)
$$

set of nodes (or vertices)
set of edges (or arc)

undirected graph

directed graph
$\operatorname{deg}(v)=\#$ of edges at that vertex

$$
\begin{aligned}
& \operatorname{deg}(1)=2 \\
& \operatorname{deg}(4)=3
\end{aligned}
$$

Graph Theory

$$
G=(V, E)
$$

set of nodes (or vertices)
set of edges (or arc)

undirected graph
$\operatorname{deg}(v)=\#$ of edges at that vertex

degin $(v)=\#$ of incoming edges
degout $(v)=\#$ of outgoing edges

$$
\begin{aligned}
& \operatorname{deg}^{\text {in }}(5)=1 \\
& \operatorname{deg}^{\text {out }}(4)=2
\end{aligned}
$$

Graph Theory

$$
G=(V, E)
$$

set of nodes (or vertices)
set of edges (or arc)

undirected graph
$\operatorname{deg}(\mathrm{v})=$ \# of edges at that vertex

$$
\Sigma \operatorname{deg}(v)=2|E|
$$

- a vertex v is called odd vertex if $\operatorname{deg}(v)$ is odd

directed graph
degin $(v)=\#$ of incoming edges degout $(v)=\#$ of outgoing edges
$\Sigma \operatorname{deg}^{\text {in }}(v)=\Sigma \operatorname{deg}^{\text {out }}(v)=|E|$
- a vertex v is called even vertex if $\operatorname{deg}(v)$ is even

Graph Theory

Complete Graphs

K_{1}

K_{2}

K_{3}

K_{4}

K_{5}

Cycle Graphs

C_{3}

C_{4}

C_{5}

Graph Theory

- a subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ such that $W \subseteq V$ and $F \subseteq E$.

K_{5}

$G_{1} \subseteq K_{5}$

$G_{2} \subseteq K_{5}$
$G_{2} \subseteq G_{1}$

$G_{3} \subseteq K_{5}$
$G_{3} \subseteq G_{2}$
- the subgraph induced by a subset W of the vertex set V is the graph (W, F) where the edge set F contains an edge in E if and only if both starting node and ending node of this edge are in W.

the subgraph induced by $W=\{a, b, c, d\}$
this subgraph produced by removing the edge e

Graph Theory

$G_{1}=\left(V_{1}, E_{1}\right)$
$G_{2}=\left(V_{2}, E_{2}\right)$
$G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$

Representation

Adjacency List

$$
\begin{aligned}
& 1-2,4 \\
& 2-1,4 \\
& 3-4 \\
& 4-1,2,3
\end{aligned}
$$

Adjacency Matrix

	1	2	3	4
1	0	1	0	1
2	1	0	0	1
3	0	0	0	1
4	1	1	1	0

Adjacency List

$$
1-3
$$

$$
2 \text { - }
$$

3-4

$$
4-1,2
$$

Adjacency Matrix

	1	2	3	4
1	0	0	1	0
2	0	0	0	0
3	0	0	0	1
4	1	1	0	0

Representation

Adjacency List Adjacency Matrix

- retrieving all neighbors of a given node u
- given nodes u and v, checking if u and v are adjacent
- space
$O(\operatorname{deg}(\mathrm{u}))$
$O(\operatorname{deg}(u))$
$O(1)$
$O(I E I+\mid V I)$
$O\left(|V|^{2}\right)$

If graph is sparse, use adjacency list; if graph is dense, use adjacency matrix

Isomorphism

- Two simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there exists a bijection from V_{1} to V_{2} such that a and b are adjacent in G_{1} if and only if $f(a)$ and $f(b)$ are adjacent in G_{2} for all $a, b \in V_{1}$

$$
G_{1}=\left(V_{1}, E_{1}\right)
$$

$$
G_{2}=\left(V_{2}, E_{2}\right)
$$

- $f: V_{1} \rightarrow V_{2}, f(a)=1, f(b)=4, f(c)=3, f(d)=2$
a and c are adjacent in $G_{1}, f(a)=1$ and $f(c)=3$ are adjacent in G_{2} a and d are adjacent in $G_{1}, f(a)=1$ and $f(d)=2$ are adjacent in G_{2} b and d are adjacent in $G_{1}, f(b)=4$ and $f(d)=2$ are adjacent in G_{2}

Isomorphism

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same

G

H

- G and H both have 5 vertices and 6 edges
- G has 3 vertices of degree two and 2 vertices of degree three H has 1 vertex of degree one, 2 vertices of degree two, 1 vertex of degree three, and 1 vertex of degree 4

Isomorphism

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same

- G and H both have 8 vertices and 10 edges
- G has 4 vertices of degree two and 4 vertices of degree three H has 4 vertices of degree two and 4 vertices of degree three
- One of the odd vertices (s) in H has 2 adjacent odd vertices (w and x) We don't have such case in G

connectivity

$5,3,4,1$ is a simple path in G

- a path in a graph is a sequence of nodes $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, v_{j}\right)$ is an edge in the graph. a path is simple if all nodes are distinct

connectivity

$4,1,2,4$ is a simple cycle in G

- a path in a graph is a sequence of nodes $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, v_{j}\right)$ is an edge in the graph. a path is simple if all nodes are distinct
- nodes u and v are called connected if there is a path between them. A graph is connected if there is a path between every pair of nodes
- a cycle is a path $v_{1}, v_{2}, \ldots, v_{k}$ such that $v_{1}=v_{k}$. A cycle is simple if first $k-1$ nodes are distinc \dagger

connectivity

$4,1,2,4$ is a simple cycle with length 3

- a path in a graph is a sequence of nodes $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, v_{j}\right)$ is an edge in the graph. a path is simple if all nodes are distinct
- nodes u and v are called connected if there is a path between them. A graph is connected if there is a path between every pair of nodes
- a cycle is a path $v_{1}, v_{2}, \ldots, v_{k}$ such that $v_{1}=v_{k}$. A cycle is simple if first k-1 nodes are distinct
- length of a path is the number of edges in the path

connectivity

- Given $G=(V, E)$ and $H \subseteq G$, if there is no proper subgraph U of $G(U \subset$ G) such that $H \subseteq U, H$ is called a maximal subgraph of G.
- a connected component is a maximal subgraph where there is a path between any two nodes of it
- a graph can be made up of seperate connected components

G

Connectivity

- Consider a vertex v of a given graph $G=(V, E)$, if removing v and all its inncident edges from the graph produces a subgraph with more connected components, v is called cut vertex (or cut vertices)
- Similarly, if removing an edge from a graph creates a subgraph with more connected components, it's called cut edge

G

cut vertices: $\{c\}$ cut edges: $\}$

Connectivity

- A subset W of the vertex set V of $G=(V, E)$ is called a vertex cut or separating set, if $G-W$ is disconnected
- Similarly, a subset F of the edge set E of $G=(V, E)$ is called a edge cut, if $G-F$ is disconnected

G
vertex cut: $\{b, c\}$ or $\{f, e\}$ edge cut: $\{(b, f),(c, e)\}$ or $\{(a, c),(a, b)\}$ no cut vertex and no cut edge

vertex cut: $\{c\}$ edge cut: $\{(d, c),(c, e)\}$ no cut edge

Connectivity

- A subset W of the vertex set V of $G=(V, E)$ is called a vertex cut or senaratinn set if $G-W$ is disconnerted
- Simi $\kappa(G)$: minimum number of vertices in a vertex cut edge cut, $\quad \lambda(G)$: minimum number of edges in a edge cut
vertex cut: $\{b, c\}$ or $\{f, e\}$

$$
\begin{aligned}
& \kappa(G)=2 \\
& \lambda(G)=2
\end{aligned}
$$

edge cut: $\{(b, f),(c, e)\}$ or $\{(a, c) .(a, b)\}$
vertox cut: $\{\mathrm{c}\}$ no cut vertex and no cu

$$
\kappa(G) \leq \lambda(G) \leq \min _{v \in V} \operatorname{deg}(v)
$$

Isomorphism

- Isomorphic graphs must have same number of edges
- The degrees of the vertices in isomorphic graphs must be same
- They must have same amount of simple circuits of length k

- G and H both have 6 vertices and 8 edges
- G has 2 vertices of degree two and 4 vertices of degree three H has 2 vertices of degree two and 4 vertices of degree three
- G has two simple circuits of length three; however, H has no simple circuit of length three

Connectivity

- How many paths of length two from a to c?

$$
a, b, c \text { or } a, d, c
$$

- For a given graph $G=(V, E)$, what are the number of different paths of length k from one vertex to another one?
- Given a graph $G=(V, E)$ together with the adjacency matrix A, the number of different paths of length m from v_{i} to v_{j} will be the (i, j)-th entry of A^{m}
Basis Step ($k=1$) For $A=\left(a_{i j}\right), a_{i j}$ will be the number of different path of length 1 from v_{i} to v_{j} (true)
Inductive Step Assume it's true for k, i.e. the number of different paths of length k from v_{i} to v_{j} will be the (i, j)-th entry of A^{k}.
For $k+1, A^{k+1}=A^{k}$. A

$$
\begin{gathered}
A^{k+1}=\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 n} \\
\vdots & \ddots & \vdots \\
b_{n 1} & \cdots & b_{n n}
\end{array}\right)\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right) \\
c_{i j}=b_{i 1} \cdot a_{1 j}+b_{i 2} \cdot a_{2 j}+\ldots+b_{i n} \cdot a_{n j}
\end{gathered}
$$

$c_{i j}$: the number of different paths of length $(k+1)$ from v_{i} to v_{j}

Euler Paths and Circuits

- Euler circuit is a simple circuit that contains every edge of G.
- Euler path is a simple path that contains every edge of G
- Does this graph have an Euler path or Euler circuit?

Euler Paths and Circuits

- when you pass a vertex, you add two to the degree of it.
- the degree of starting node and ending node just one or odd number
- the graph has a Euler path or Euler circuit if if it has no odd vertex or exactly two odd vertices.

Euler Paths and Circuits

- when you pass a vertex, you add two to the degree of it.
- the degree of starting node and ending node just one or odd number
- the graph has a Euler path or Euler circuit if if it has no odd vertex or exactly two odd vertices.

Euler Paths and Circuits

F-B-A-C-B-D-F-E-D-C-E

$$
F-B-D-E-G-C-E-F-D-C-A-B-C
$$

Hamilton Paths and Circuits

- Hamilton circuit is a simple circuit that contains every vertex of G exactly once except the starting vertex.
- Hamilton path is a simple circuit that contains every vertex of G exactly once

- Does G contain a Hamilton path or circuit?

$$
a-b-c-d
$$

no Hamilton circuit

- There is no easy way to determine a given graph has a Hamilton circuit or Hamilton path
a graph with a vertex of degree one cannot have a Hamilton circuit

SSSP

- given a weighted graph $G=(V, E)$ and a source vertex s in V, find the shortest path from s to every other vertex in V

SSSP

- given a weighted graph $G=(V, E)$ and a source vertex s in V, find the shortest path from s to every other vertex in V

19
shortest-paths tree

SSSP

- given a weighted graph $G=(V, E)$ and a source vertex s in V, find the shortest path from s to every other vertex in V
- Three cases :
- the weight of each edge fixed as 1
--BFS--
- the weight of each edge non-negative --Dijkstra-
- the weight of each can be negative --Belmann/Ford--

Relaxation

- For each vertex v in V, initialize two parameters :
- parent pointer - indicates the predecessor of the vertex in the shortest path from s to v
- distance - indicates the shortest-path estimate from vertex to the source

Initialize (G, s)
for each vertex viV
v.dis $=\infty$
v.par $=$ nil
$s . \operatorname{dis}=0$

Relaxation

- relaxing an edge (u, v): testing whether the shortest path to the vertex v can be improved by going through the vertex u

Relax (u, v)

if $v . d i s>u . d i s+w(u, v)$
v.dis $=u . d i s+w(u, v)$
v.par $=u$

$$
\begin{aligned}
& \text { v.dis >u.dis }+w(u, v) \longrightarrow \text { v.dis }=u . d i s+w(u, v) \\
& 12>8+3 \\
& \text { v.dis }=11 \\
& \text { v.par }=u
\end{aligned}
$$

Relaxation

- Let $\delta(s, v)$ be the weight of the shortest path from source to the vertex v (after the termination of the program)
- For any edge (u, v) in E,

$$
\delta(s, v) \leq \delta(s, u)+w(u, v)
$$

- For all vertices vin V ,

$$
\text { v.dis } \geq \delta(s, v)
$$

- If there is no path from s to v, then

$$
\mathrm{v} . \mathrm{dis}=\delta(s, v)=\infty
$$

Dijkstra's Algorithm

Dijkstra(G,s)

for each u of V
u.key $=\infty$
u.par $=$ nil
s.key $=0$

initialize an empty set S
create a minimum priority Q on $V\} O(I V I)$
while $Q \neq\{$ \}
$u=$ ExtractMin(Q) $\longrightarrow O(I V I . \log I V I)$
$S=S \cup\{u\}$
for each v of $\operatorname{Adj}(u)$ if $v . d i s>u . d i s+w(u, v)$
v.dis $=u . d i s+w(u, v) \quad-O(I E I . \log \mid V I)$ v.par $=u$

Relax (u, v) update Q
$O(1)$

Dijkstra's Algorithm

Dijkstra(G,s)

for each u of V
u.key $=\infty$
u.par $=$ nil
s.key $=0$
initialize an empty set S
create a minimum priority Q on V while $Q \neq\{$ \}

$$
\begin{aligned}
& u=\text { ExtractMin(Q) } \\
& S=S \cup\{u\} \\
& \text { for each } v \text { of } \operatorname{Adj}(u) \\
& \text { if } v . d i s>u . d i s+w(u, v) \\
& v . d i s=u . d i s+w(u, v) \\
& v . p a r=u \\
& \text { update } Q
\end{aligned}
$$

Dijkstra's Algorithm

Dijkstra(G, s)

for each u of V
u.key $=\infty$
u.par $=$ nil
s.key $=0$
initialize an empty set S
create a minimum priority Q on V while $Q \neq\{$ \}

$$
u=\operatorname{Extract} \operatorname{Min}(Q)
$$

$S=S \cup\{u\}$
for each v of $\operatorname{Adj}(u)$
if $v . d i s>u . d i s+w(u, v)$
v.dis = u.dis + w(u,v)
v.par $=u$
update Q

Difkstrais Algonithm

Dijkstra(G, s)

for each u of V
u.key $=\infty$
u.par $=$ nil
s.key $=0$
initialize an empty set S
create a minimum priority Q on V while $Q \neq\{$ \}

$$
u=\operatorname{Extract} \operatorname{Min}(Q)
$$

$S=S \cup\{u\}$
for each v of $\operatorname{Adj}(u)$

$$
\begin{aligned}
& \text { if } v . d i s>u . d i s+w(u, v) \\
& \text { v.dis }=u . d i s+w(u, v) \\
& \text { v.par }=u \\
& \text { update } Q
\end{aligned}
$$

Dijkstra's Algorithm

Dijkstra(G, s)

for each u of V
u.key $=\infty$
u.par $=$ nil
s.key $=0$
initialize an empty set S
create a minimum priority Q on V while $Q \neq\{$ \}

$$
u=\operatorname{Extract} \operatorname{Min}(Q)
$$

$S=S \cup\{u\}$
for each v of $\operatorname{Adj}(u)$
if $v . d i s>u . d i s+w(u, v)$
v.dis $=u . d i s+w(u, v)$
v.par $=u$
update Q

Dijkstra's Algorithm

Dijkstra(G, s)

for each u of V
u.key $=\infty$
u.par $=$ nil
s.key $=0$
initialize an empty set S
create a minimum priority Q on V while $Q \neq\{$ \}

$$
u=\operatorname{Extract} \operatorname{Min}(Q)
$$

$S=S \cup\{u\}$
for each v of $\operatorname{Adj}(u)$
if $v . d i s>u . d i s+w(u, v)$
v.dis $=u . d i s+w(u, v)$
v.par $=u$
update Q

Dijkstra's Algorithm

Dijkstra(G, s)

for each u of V
u.key $=\infty$
u.par $=$ nil
s.key $=0$
initialize an empty set S
create a minimum priority Q on V while $Q \neq\{$ \}

$$
u=\operatorname{Extract} \operatorname{Min}(Q)
$$

$S=S \cup\{u\}$
for each v of $\operatorname{Adj}(u)$
if $v . d i s>u . d i s+w(u, v)$
v.dis $=u . d i s+w(u, v)$
v. par $=u$
update Q

Dijkstra's Algorithm

Dijkstra(G, s)

for each u of V
u.key $=\infty$
u.par $=$ nil
s.key $=0$
initialize an empty set S
create a minimum priority Q on V while $Q \neq\{$ \}

$$
u=\operatorname{Extract} \operatorname{Min}(Q)
$$

$S=S \cup\{u\}$
for each v of $\operatorname{Adj}(u)$
if $v . d i s>u . d i s+w(u, v)$
v.dis $=u . d i s+w(u, v)$
v.par $=u$
update Q

Dijkstra's Algorithm

Dijkstra(G, s)

for each u of V
u.key $=\infty$
u.par $=$ nil
s.key $=0$
initialize an empty set S
create a minimum priority Q on V while $Q \neq\{$ \}

$$
u=\operatorname{Extract} \operatorname{Min}(Q)
$$

$S=S \cup\{u\}$
for each v of $\operatorname{Adj}(u)$
if $v . d i s>u . d i s+w(u, v)$
v.dis $=u . d i s+w(u, v)$
v.par $=u$
update Q

Dijkstra's Algorithm

Dijkstra(G, s)

for each u of V
u.key $=\infty$
u.par $=$ nil
s.key $=0$
initialize an empty set S
create a minimum priority Q on V while $Q \neq\{$ \}

$$
u=\operatorname{Extract} \operatorname{Min}(Q)
$$

$S=S \cup\{u\}$
for each v of $\operatorname{Adj}(u)$
if $v . d i s>u . d i s+w(u, v)$
v.dis $=u . d i s+w(u, v)$
v.par $=u$
update Q

Diikstrais Alaorithm

Dijkstra(G, s)

for each u of V
u.key $=\infty$
u.par $=$ nil
s.key $=0$
initialize an empty set S
create a minimum priority Q on V while $Q \neq\{$ \}

$$
u=\operatorname{Extract} \operatorname{Min}(Q)
$$

$S=S U\{u\}$
for each v of $\operatorname{Adj}(u)$
if $v . d i s>u . d i s+w(u, v)$
$v . d i s=u . d i s+w(u, v)$
v.par $=u$
update Q

Dilkstrais Algonithm

Dijkstra(G, s)

for each u of V
u.key $=\infty$
u.par $=$ nil
s.key $=0$
initialize an empty set S
create a minimum priority Q on V while $Q \neq\{$ \}

$$
u=\operatorname{Extract} \operatorname{Min}(Q)
$$

$\mathrm{S}=\mathrm{S} \cup\{\mathrm{u}\}$
for each v of $\operatorname{Adj}(u)$
if $v . d i s>u . d i s+w(u, v)$
$v . d i s=u . d i s+w(u, v)$
v.par $=u$
update Q

Dilkstrais Alaonithm

Dijkstra(G, s)

for each u of V
u.key $=\infty$
u.par $=$ nil
s.key $=0$
initialize an empty set S
create a minimum priority Q on V while $Q \neq\{$ \}

$$
u=\operatorname{Extract} \operatorname{Min}(Q)
$$

$\mathrm{S}=\mathrm{S} \cup\{\mathrm{u}\}$
for each v of $\operatorname{Adj}(u)$
if v.dis > u.dis + w(u,v)
$v . d i s=u . d i s+w(u, v)$
v.par = u
update Q

Dilkstrais Algonithm

Dijkstra(G,s)

for each u of V
u.key $=\infty$
u.par $=$ nil
s.key $=0$
initialize an empty set S
create a minimum priority Q on V while $Q \neq\{$ \}
$u=\operatorname{Extract} \operatorname{Min}(Q)$
$S=S \cup\{u\}$
for each v of $\operatorname{Adj}(u)$
if $v . d i s>u . d i s+w(u, v)$
$v . d i s=u . d i s+w(u, v)$
v.par $=u$
update Q

Dilkstrais Algonithm

Dijkstra(G,s)

for each u of V
u.key $=\infty$
u.par $=$ nil
s.key $=0$
initialize an empty set S
create a minimum priority Q on V while $Q \neq\{$ \}
$u=$ ExtractMin(Q)
$S=S \cup\{u\}$
for each v of $\operatorname{Adj}(u)$
if $v . d i s>u . d i s+w(u, v)$
$v . d i s=u . d i s+w(u, v)$
v.par $=u$
update Q

Dilkstrais Algonithm

Dijkstra(G, s)

for each u of V
u.key $=\infty$
u.par $=$ nil
s.key $=0$
initialize an empty set S
create a minimum priority Q on V while $Q \neq\{$ \}
$u=\operatorname{ExtractMin}(Q)$
$S=S U\{u\}$
for each v of $\operatorname{Adj}(u)$
if v.dis > u.dis + w(u,v)
$v . d i s=u . d i s+w(u, v)$
v.par = u
update Q

Dilkstra's Algonithm

Dijkstra(G, s)

for each u of V
u.key $=\infty$
u. par $=$ nil
s.key $=0$
initialize an empty set S
create a minimum priority Q on V while $Q \neq\{$ \}
$u=$ ExtractMin(Q)
$S=S \cup\{u\}$
for each v of $\operatorname{Adj}(u)$
if $v . d i s>u . d i s+w(u, v)$
$v . d i s=u . d i s+w(u, v)$
v.par $=u$
update Q

$$
S=\{H, F, G, E, C, D, B, A\}
$$

Bipartite Graphs

- a simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint subsets V_{1} and V_{2} such that every edge in the graph connects a vertex in V_{1} and a vertex in V_{2} (there is no edge (a, b) such that a and b are elements of same partition)

Planar Graphs

- a graph G is called planar if it can be drawn in the plane without any edge crossing.
this drawing is called planar representation of the graph

Graph Coloring

Graph Coloring

- a coloring of a simple graph is the assigntment of a color to each vertex so that no two adjacent vertices are assigned the same color

C_{5}

C_{6}

Graph Coloring

- a coloring of a simple graph is the assigntment of a color to each vertex so that no two adjacent vertices are assigned the same color

C_{5}

C_{6}

Graph Coloring

- a coloring of a simple graph is the assigntment of a color to each vertex so that no two adjacent vertices are assigned the same color

$\chi(G)=3$ (chromatic number)

$\chi\left(K_{4}\right)=4$

$C_{5} \quad \chi\left(C_{5}\right)=3$

$C_{6} \quad \chi\left(C_{6}\right)=2$

