PHYSICS I

Assoc.Prof.Dr. Yeşim Moğulkoç

Kinematic Equations – summary

TABLE 2.2 Kinematic Equations for Motion of a Particle

Under Constant Acceleration

Equation Number	Equation	Information Given by Equation
2.13	$v_{xf} = v_{xi} + a_x t$	Velocity as a function of time
2.15	$x_f = x_i + \frac{1}{2}(v_{xi} + v_{xf})t$	Position as a function of velocity and time
2.16	$x_f = x_i + v_{xi}t + \frac{1}{2}a_xt^2$	Position as a function of time
2.17	$v_{xf}^2 = v_{xi}^2 + 2a_x(x_f - x_i)$	Velocity as a function of position

Note: Motion is along the x axis.

Graphical Look at Motion: Displacement – Time curve

The slope of the curve is the velocity.

The curved line indicates the velocity is changing.

Therefore, there is an acceleration.

Graphical Look at Motion: Velocity – Time curve

The slope gives the acceleration.

The straight line indicates a constant acceleration.

Graphical Look at Motion: Acceleration - Time curve

The zero slope indicates a constant acceleration.

Galileo Galilei

1564 - 1642

Italian physicist and astronomer

Formulated laws of motion for objects in free fall

Supported heliocentric universe

Freely Falling Objects

A **freely falling object** is any object moving freely under the influence of gravity alone.

It does not depend upon the initial motion of the object.

- Dropped released from rest
- Thrown downward
- Thrown upward

Acceleration of Freely Falling Object

The acceleration of an object in free fall is directed downward, regardless of the initial motion.

The magnitude of free fall acceleration is $g = 9.80 \text{ m/s}^2$.

- g decreases with increasing altitude
- g varies with latitude
- 9.80 m/s² is the average at the Earth's surface
- The italicized g will be used for the acceleration due to gravity.
 - Not to be confused with g for grams

Acceleration of Free Fall, cont.

We will neglect air resistance.

Free fall motion is constantly accelerated motion in one dimension.

Use model of a particle under constant acceleration

Let upward be positive

Use the kinematic equations

- With $a_y = -g = -9.80 \text{ m/s}^2$
- Note displacement is in the vertical direction

Free Fall – An Object Dropped

Initial velocity is zero

Let up be positive

Use the kinematic equations

 Generally use y instead of x since vertical

Acceleration is

$$a_v = -g = -9.80 \text{ m/s}^2$$

Free Fall – An Object Thrown Downward

$$a_y = -g = -9.80 \text{ m/s}^2$$

Initial velocity ≠ 0

 With upward being positive, initial velocity will be negative.

Free Fall – Object Thrown Upward

Initial velocity is upward, so positive

The instantaneous velocity at the maximum height is zero.

 $a_y = -g = -9.80 \text{ m/s}^2$ everywhere in the motion

Thrown upward, cont.

The motion may be symmetrical.

- Then t_{up} = t_{down}
- Then $v = -v_0$

The motion may not be symmetrical.

- Break the motion into various parts.
 - Generally up and down

Free Fall Example

Initial velocity at A is upward (+) and acceleration is -g (-9.8 m/s²).

At B, the velocity is 0 and the acceleration is -g (-9.8 m/s²).

At C, the velocity has the same magnitude as at A, but is in the opposite direction.

The displacement is -50.0 m (it ends up 50.0 m below its starting point).

Kinematic Equations – General Calculus Form

$$a_{x} = \frac{dv_{x}}{dt}$$

$$v_{xf} - v_{xi} = \int_{0}^{t} a_{x} dt$$

$$v_{x} = \frac{dx}{dt}$$

$$x_{f} - x_{i} = \int_{0}^{t} v_{x} dt$$

Kinematic Equations – From Integration

The integration form of $v_f - v_i$ gives

$$\mathbf{v}_{xt} - \mathbf{v}_{xi} = \mathbf{a}_{x}\mathbf{t}$$

The integration form of $x_f - x_i$ gives

$$\mathbf{x}_f - \mathbf{x}_i = \mathbf{v}_{xi}\mathbf{t} + \frac{1}{2}\mathbf{a}_x\mathbf{t}^2$$

General Problem Solving Strategy

In addition to basic physics concepts, a valuable skill is the ability to solve complicated problems.

Steps in a general problem solving approach:

- Conceptualize
- Categorize
- Analyze
- Finalize

Problem Solving – Conceptualize

Think about and understand the situation.

Make a quick drawing of the situation.

Gather the numerical information.

Include algebraic meanings of phrases.

Focus on the expected result.

Think about units.

Think about what a reasonable answer should be.

Problem Solving – Categorize

Simplify the problem.

- Can you ignore air resistance?
- Model objects as particles

Classify the type of problem.

- Substitution
- Analysis

Try to identify similar problems you have already solved.

What analysis model would be useful?

Problem Solving – Analyze

Select the relevant equation(s) to apply.

Solve for the unknown variable.

Substitute appropriate numbers.

Calculate the results.

Include units

Round the result to the appropriate number of significant figures.

Problem Solving – Finalize

Check your result.

- Does it have the correct units?
- Does it agree with your conceptualized ideas?

Look at limiting situations to be sure the results are reasonable.

Compare the result with those of similar problems.

Problem Solving – Some Final Ideas

When solving complex problems, you may need to identify sub-problems and apply the problem-solving strategy to each sub-part.

These steps can be a guide for solving problems in this course.