PHYSICS I Assoc.Prof.Dr. Yeşim Moğulkoç # LINEER MOMENTUM & COLLISIONS #### Linear Momentum The **linear momentum** of a particle or an object that can be modeled as a particle of mass m moving with a velocity $\vec{\mathbf{V}}$ is defined to be the product of the mass and velocity: - $\vec{p} \equiv m\vec{v}$ - The terms momentum and linear momentum will be used interchangeably in the text. Linear momentum is a vector quantity. Its direction is the same as the direction of the velocity. The dimensions of momentum are ML/T. The SI units of momentum are $kg \cdot m / s$. Momentum can be expressed in component form: $$p_x = m v_x p_y = m v_y p_z = m v_z$$ # Momentum and Kinetic Energy Momentum and kinetic energy both involve mass and velocity. There are major differences between them: - Kinetic energy is a scalar and momentum is a vector. - Kinetic energy can be transformed to other types of energy. - There is only one type of linear momentum, so there are no similar transformations. Analysis models based on momentum are separate from those based on energy. This difference allows an independent tool to use in solving problems. #### Newton's Second Law and Momentum Newton's Second Law can be used to relate the momentum of a particle to the resultant force acting on it. $$\Sigma \vec{\mathbf{F}} = m\vec{\mathbf{a}} = m\frac{d\vec{\mathbf{v}}}{dt} = \frac{d(m\vec{\mathbf{v}})}{dt} = \frac{d\vec{\mathbf{p}}}{dt}$$ with constant mass The time rate of change of the linear momentum of a particle is equal to the net force acting on the particle. - This is the form in which Newton presented the Second Law. - It is a more general form than the one we used previously. - This form also allows for mass changes. ### Conservation of Linear Momentum Whenever two or more particles in an isolated system interact, the total momentum of the system remains constant. - The momentum of the system is conserved, not necessarily the momentum of an individual particle. - Avoid applying conservation of momentum to a single particle. - This also tells us that the total momentum of an isolated system equals its initial momentum. ### Conservation of Momentum, 2 Conservation of momentum can be expressed mathematically in various ways: $$\vec{p}_{total} = \vec{p}_1 + \vec{p}_2 = constant$$ $$\vec{p}_{1i} + \vec{p}_{2i} = \vec{p}_{1f} + \vec{p}_{2f}$$ This is the mathematical statement of a new analysis model, the isolated system (momentum). In component form, the total momenta in each direction are independently conserved. $$p_{1ix} + p_{2ix} = p_{1fx} + p_{2fx} \quad p_{1iy} + p_{2iy} = p_{1fy} + p_{2fy} \quad p_{1iz} + p_{2iz} = p_{1fz} + p_{2fz}$$ Conservation of momentum can be applied to systems with any number of particles. The momentum version of the isolated system model states whenever two or more particles in an isolated system interact, the total momentum of the system remains constant. ### Forces and Conservation of Momentum In conservation of momentum, there is no statement concerning the types of forces acting on the particles of the system. The forces are not specified as conservative or non-conservative. There is no indication if the forces are constant or not. The only requirement is that the forces must be internal to the system. This gives a hint about the power of this new model. ### Conservation of Momentum, Archer Example Revisited The archer is standing on a frictionless surface (ice). #### Approaches: - Motion no - No information about velocities, etc. - Newton's Second Law no - No information about F or a - Energy approach no - No information about work or energy - Momentum yes ### Archer Example, 2 #### Conceptualize The arrow is fired one way and the archer recoils in the opposite direction. #### Categorize - Momentum - Let the system be the archer with bow (particle 1) and the arrow (particle 2). - It is not an isolated system in the y-direction because the gravitational force and the normal force act on it. - There are no external forces in the x-direction, so it is isolated in terms of momentum in the x-direction. - Apply the isolated system (momentum) model in terms of momentum components in the x-direction. ### Archer Example, 3 #### Analyze, cont. - Total momentum before releasing the arrow is 0 - The total momentum after releasing the arrow is $$\vec{\mathbf{p}}_{1f} + \vec{\mathbf{p}}_{2f} = 0 \rightarrow m_1 \vec{\mathbf{v}}_{1f} + m_2 \vec{\mathbf{v}}_{2f}$$ #### Finalize - The final velocity of the archer is negative. - Indicates he moves in a direction opposite the arrow - Archer has much higher mass than arrow, so velocity is much lower #### Notes - The problem seems very simple, but could not be solved using previous analysis models. - Using the new momentum model made the solution quite simple. # Impulse and Momentum The momentum of a system changes if a net force from the environment acts on the system. For momentum considerations, a system is non-isolated if a net force acts on the system for a time interval. From Newton's Second Law, $\vec{\mathbf{F}} = \frac{\partial \mathbf{p}}{\partial t}$ Solving for $d\vec{p}$ gives $d\vec{p} = \sum \vec{F} dt^{dt}$ Integrating to find the change in momentum over some time interval. $$\Delta \vec{\mathbf{p}} = \vec{\mathbf{p}}_f - \vec{\mathbf{p}}_i = \int_{t_i}^{t_f} \vec{\mathbf{F}} dt = \vec{\mathbf{I}}$$ The integral is called the *impulse*, \vec{l} , of the force acting on an object over Δt . ### Impulse-Momentum Theorem This equation expresses the **impulse-momentum theorem**: The change in the momentum of a particle is equal to the impulse of the new force acting on the particle. - $\Delta \vec{p} = \vec{l}$ - This is equivalent to Newton's Second Law. - This is identical in form to the conservation of energy equation. - This is the most general statement of the principle of conservation of momentum and is called the conservation of momentum equation. - This form applies to non-isolated systems. - This is the mathematical statement of the non-isolated system (momentum) model. ### More About Impulse Impulse is a vector quantity. The magnitude of the impulse is equal to the area under the force-time curve. The force may vary with time. Dimensions of impulse are M L / T Impulse is not a property of the particle, but a measure of the change in momentum of the particle. The impulse imparted to the particle by the force is the area under the curve. ### Impulse, Final The impulse can also be found by using the time averaged force. $$\vec{\mathbf{I}} = \sum \vec{\mathbf{F}} \Delta t$$ This would give the same impulse as the time-varying force does. The time-averaged net force gives the same impulse to a particle as does the time-varying force in (a). # Impulse Approximation In many cases, one force acting on a particle acts for a short time, but is much greater than any other force present. When using the Impulse Approximation, we will assume this is true. Especially useful in analyzing collisions The force will be called the *impulsive force*. The particle is assumed to move very little during the collision. $\vec{\mathbf{p}}_i$ and $\vec{\mathbf{p}}_f$ represent the momenta *immediately* before and after the collision. ### Impulse-Momentum: Crash Test Example #### Conceptualize - The collision time is short. - We can image the car being brought to rest very rapidly and then moving back in the opposite direction with a reduced speed. ### Categorize - Assume net force exerted on the car by wall and friction with the ground is large compared with other forces. - Gravitational and normal forces are perpendicular and so do not effect the horizontal momentum. ### Crash Test Example, 2 #### Categorize, cont. - Can apply impulse approximation - The car's change in momentum is due to an impulse from the environment. - Therefore, the non-isolated system (momentum) model can be applied. #### Analyze - The momenta before and after the collision between the car and the wall can be determined. - Find - Initial momentum - Final momentum - Impulse - Average force # Crash Test Example, 3 #### Finalize - The net force is a combination of the normal force on the car from the wall and nay friction force between the tires and the ground as the front of the car crumples. - Check signs on velocities to be sure they are reasonable # Collisions – Example 1 Collisions may be the result of direct contact. The impulsive forces may vary in time in complicated ways. - This force is internal to the system. - Observe the variations in the active figure. Momentum is conserved. # Collisions – Example 2 The collision need not include physical contact between the objects. There are still forces between the particles. This type of collision can be analyzed in the same way as those that include physical contact. ### Types of Collisions In an *elastic* collision, momentum and kinetic energy are conserved. - Perfectly elastic collisions occur on a microscopic level. - In macroscopic collisions, only approximately elastic collisions actually occur. - Generally some energy is lost to deformation, sound, etc. - These collisions are described by the isolated system model for both energy and momentum. - There must be no transformation of kinetic energy into other types of energy within the system. In an *inelastic* collision, kinetic energy is not conserved, although momentum is still conserved. If the objects stick together after the collision, it is a perfectly inelastic collision. ### Perfectly Inelastic Collisions Momentum of an isolated system is conserved in any collision, so the total momentum before the collision is equal to the total momentum of the composite system after the collision. Since the objects stick together, they share the same velocity after the collision. $$\boldsymbol{m}_{1}\vec{\mathbf{v}}_{1i} + \boldsymbol{m}_{2}\vec{\mathbf{v}}_{2i} = (\boldsymbol{m}_{1} + \boldsymbol{m}_{2})\vec{\mathbf{v}}_{f}$$ Before the collision, the particles move separately. After the collision, the particles move together. b #### **Elastic Collisions** Both momentum and kinetic energy are conserved. $$m_{1}\vec{\mathbf{v}}_{1i} + m_{2}\vec{\mathbf{v}}_{2i} = m_{1}\vec{\mathbf{v}}_{1f} + m_{2}\vec{\mathbf{v}}_{2f}$$ $$\frac{1}{2}m_{1}\mathbf{v}_{1i}^{2} + \frac{1}{2}m_{2}\mathbf{v}_{2i}^{2} = \frac{1}{2}m_{1}\mathbf{v}_{1f}^{2} + \frac{1}{2}m_{2}\mathbf{v}_{2f}^{2}$$ Typically, there are two unknowns to solve for and so you need two equations. Before the collision, the particles move separately. After the collision, the particles continue to move separately with new velocities. ### Elastic Collisions, cont. The kinetic energy equation can be difficult to use. With some algebraic manipulation, a different equation can be used. $$\mathbf{v}_{1i} - \mathbf{v}_{2i} = \mathbf{v}_{1f} + \mathbf{v}_{2f}$$ This equation, along with conservation of momentum, can be used to solve for the two unknowns. - It can only be used with a one-dimensional, elastic collision between two objects. - Using this equation eliminates the need for using an equation with quadratic terms (from the kinetic energy equation). Remember to use the appropriate signs for all velocities. # Elastic Collisions, final ### Example of some special cases: - $m_1 = m_2$ the particles exchange velocities - When a very heavy particle collides head-on with a very light one initially at rest, the heavy particle continues in motion unaltered and the light particle rebounds with a speed of about twice the initial speed of the heavy particle. - When a very light particle collides head-on with a very heavy particle initially at rest, the light particle has its velocity reversed and the heavy particle remains approximately at rest. ### Example: Stress Reliever #### Conceptualize - Imagine one ball coming in from the left and two balls exiting from the right. - Is this possible? #### Categorize - Due to shortness of time, the impulse approximation can be used. - Categorize the system as isolated in terms of both momentum and energy. - Elastic collisions # Example: Stress Reliever, cont. ### Analyze - Check to see if momentum is conserved. - It is - Check to see if kinetic energy is conserved. - It is not - Therefore, the collision couldn't be elastic. #### Finalize Having two balls exit was not possible if only one ball is released. ### Example: Stress Reliever, final For a collision to actually occur, both momentum and kinetic energy must be conserved. - One way to do so is with equal numbers of balls released and exiting. - Another way is to have some of the balls taped together so they move as one object.