PHYSICS II

Assoc.Prof. Yeşim MOĞULKOÇ

Contents

- Multiloop Circuits
-Resistances in parallel
-Kirchhoff’s Rules
-EMFs in Series and in Parallel; Charging a Battery
-Resistace and capacitors
-The ammeter and the voltmeter
-RC Circuits

MULTILOOP CIRCUITS

JUNCTION RULE: The sum of the currents entering any junction must be equal to the sum of the currents leaving that junction.

Figure shows a circuit containing more than one loop. If we traverse the left-hand loop in a counterclockwise direction from point b, the loop rule gives us

$$
\mathscr{E}_{1}-i_{1} R_{1}+i_{3} R_{3}=0 .
$$

The current into the junction must equal the current out (charge is conserved).

If we traverse the right-hand loop in a counterclockwise direction from point b, the loop rule gives us

$$
-i_{3} R_{3}-i_{2} R_{2}-\mathscr{E}_{2}=0
$$

If we had applied the loop rule to the big loop, we would have obtained (moving counterclockwise from b) the equation

$$
\mathscr{E}_{1}-i_{1} R_{1}-i_{2} R_{2}-\mathscr{E}_{2}=0 .
$$

which is the sum of two small loops equations.

MULTILOOP CIRCUITS

Resistances in Parallel

Figure (a) shows three resistances connected in parallel to an ideal battery of emf \mathscr{E}. The applied potential difference V is maintained by the battery. Fig. b, the three parallel resistances have been replaced with an equivalent resistance $R_{e q}$.

Parallel resistors and their equivalent have the same potential difference ("par-V").

(a)

(b)

To derive an expression for $R_{\text {eq }}$ in Fig. (b), we first write the current in each actual resistance in Fig. (a) as

$$
i_{1}=\frac{V}{R_{1}}, \quad i_{2}=\frac{V}{R_{2}}, \quad \text { and } \quad i_{3}=\frac{V}{R_{3}}
$$

where V is the potential difference between a and b. If we apply the junction rule at point a in Fig. (a) and then substitute these values, we find

$$
i=i_{1}+i_{2}+i_{3}=V\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)
$$

If we replaced the parallel combination with the equivalent resistance $R_{e q}$ (Fig. b), we would have $i=\frac{V}{R_{\mathrm{cq}}}$. and thus substituting the value of i from above equation we get,

$$
\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} . \square \frac{1}{R_{\mathrm{eq}}}=\sum_{j=1}^{n} \frac{1}{R_{j}} \quad(n \text { resistances in parallel }) \text {. }
$$

Kirchhoff's Rules

Some circuits cannot be broken down into series and parallel connections.

Kirchhoff's Rules

For these circuits we use Kirchhoff's rules.
Junction rule: The sum of currents entering a junction equals the sum of the currents leaving it.

Kirchhoff's Rules

Loop rule: The sum of the changes in potential around a closed loop is zero.

(b)

Kirchhoff's Rules

Problem Solving: Kirchhoff's Rules

1. Label each current.
2. Identify unknowns.
3. Apply junction and loop rules; you will need as many independent equations as there are unknowns.
4. Solve the equations, being careful with signs.

EMFs in Series and in Parallel; Charging a Battery

EMFs in series in the same direction: total voltage is the sum of the separate voltages

EMFs in Series and in Parallel; Charging a Battery

EMFs in series, opposite direction: total voltage is the difference, but the lower-voltage battery is charged.

Circuits Containing Capacitors in Series and in Parallel

Capacitors in parallel have the same voltage across each one:

Circuits Containing Capacitors in Series and in Parallel

In this case, the total capacitance is the sum:

$$
Q=C_{\mathrm{eq}} V .
$$

$$
C_{\mathrm{eq}} V=C_{1} V+C_{2} V+C_{3} V=\left(C_{1}+C_{2}+C_{3}\right) V
$$

or

$$
\begin{equation*}
C_{\mathrm{eq}}=C_{1}+C_{2}+C_{3} . \tag{19-5}
\end{equation*}
$$

Circuits Containing Capacitors in Series and in Parallel

Capacitors in series have the same charge:

Circuits Containing Capacitors in Series and in Parallel

In this case, the reciprocals of the capacitances add to give the reciprocal of the equivalent capacitance:

$$
V=V_{1}+V_{2}+V_{3} .
$$

$$
\frac{Q}{C_{\mathrm{eq}}}=\frac{Q}{C_{1}}+\frac{Q}{C_{2}}+\frac{Q}{C_{3}}=Q\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}\right)
$$

or

$$
\begin{equation*}
\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} . \tag{19-6}
\end{equation*}
$$

Circuits Containing Capacitors in Series and in Parallel

In this case, the reciprocals of the capacitances add to give the reciprocal of the equivalent capacitance:

$$
V=V_{1}+V_{2}+V_{3} .
$$

$$
\frac{Q}{C_{\mathrm{eq}}}=\frac{Q}{C_{1}}+\frac{Q}{C_{2}}+\frac{Q}{C_{3}}=Q\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}\right)
$$

or

$$
\begin{equation*}
\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} . \tag{19-6}
\end{equation*}
$$

MULTILOOP CIRCUITS

Resistance and capacitors

Table 27-1 Series and Parallel Resistors and Capacitors

Series	Parallel	Series	Parallel
Resistors		Capacitors	
$R_{\mathrm{eq}}=\sum_{j=1}^{n} R_{j} \quad \text { Eq. 27-7 }$	$\frac{1}{R_{\mathrm{eq}}}=\sum_{j=1}^{n} \frac{1}{R_{j}} \quad \text { Eq. } 27-24$	$\frac{1}{C_{\mathrm{eq}}}=\sum_{j=1}^{n} \frac{1}{C_{j}} \quad \text { Eq. } 25-20$	$C_{\mathrm{eq}}=\sum_{j=1}^{n} C_{j} \quad \text { Eq. 25-19 }$
Same current through all resistors	Same potential difference across all resistors	Same charge on all capacitors	Same potential difference across all capacitors

Copyright © 2014 John Wiley \& Sons, Inc. All rights reserved.

Checkpoint 4

A battery, with potential V across it, is connected to a combination of two identical resistors and then has current i through it. What are the potential difference across and the current through either resistor if the resistors are (a) in series and (b) in parallel?

Answer: (a) Potential difference across each resistor: $V / 2$
Current through each resistor: i
(b) Potential difference across each resistor: V

Current through each resistor: i/2
© 2014 John Wiley \& Sons, Inc. All rights
reserved.

The ammeter and the voltmeter

An instrument used to measure currents is called an ammeter. To measure the current in a wire, you usually have to break or cut the wire and insert the ammeter so that the current to be measured passes through the meter. In the figure, ammeter A is set up to measure current i. It is essential that the resistance R_{A} of the ammeter be very much smaller than other resistances in the circuit. Otherwise, the very presence of the meter will change the current to be measured.

A meter used to measure potential differences is called a voltmeter. To find the potential difference between any two points in the circuit, the voltmeter terminals are connected between those points without breaking or cutting the wire. In the Figure, voltmeter V is set up to measure the voltage across R_{1}. It is essential that the resistance R_{V} of a voltmeter be very much larger than the resistance of any circuit element across which the voltmeter is connected. This is to insure that only a negligible current passes through the voltmeter, otherwise, the meter alters the potential difference that is to be measured.

Ammeters and Voltmeters-Measurement Affects the Quantity Being Measured

An ammeter measures current; a voltmeter measures voltage. Both are based on galvanometers, unless they are digital.
The current in a circuit passes through the ammeter; the ammeter should have low resistance so as not to affect the current.

Ammeters and Voltmeters-Measurement Affects the Quantity Being Measured

A voltmeter should not affect the voltage across the circuit element it is measuring; therefore its resistance should be very large.

Ammeters and Voltmeters-Measurement Affects the Quantity Being Measured

An ohmmeter measures resistance; it requires a battery to provide a current

Ammeters and Voltmeters-Measurement Affects the Quantity Being Measured

If the meter has too much or (in this case) too little resistance, it can affect the measurement.

RC Circuits

Charging a capacitor: The capacitor of capacitance C in the figure is initially uncharged. To charge it, we close switch S on point a. This completes an $R C$ series circuit consisting of the capacitor, an ideal battery of emf \mathscr{E} and a resistance R. The charge on the capacitor increases according to

$$
q=C \mathscr{E}\left(1-e^{-t / R C}\right) \quad \text { (charging a capacitor). }
$$

in which $C=q_{0}$ is the equilibrium (final) charge and $R C=\tau$ is the capacitive time constant of the circuit. During the charging, the current is

$$
i=\frac{d q}{d t}=\left(\frac{\mathscr{E}}{R}\right) e^{-t / R C} \quad \text { (charging a capacitor). }
$$

And the voltage is:

$$
V_{C}=\frac{q}{C}=\mathscr{E}\left(1-e^{-t / R C}\right) \quad \text { (charging a capacitor). }
$$

The product $R C$ is called the capacitive time constant of the circuit and is represented with the symbol τ.

Figure: RC circuit

Copyright © 2014 John Wiley \& Sons, Inc. All rights reserved.
The plot shows the buildup of charge on the capacitor of the above figure.

RC Circuits

Discharging a capacitor: Assume now that the capacitor of the figure is fully charged to a potential V_{0} equal to the emf \mathscr{E} of the battery. At a new time $t=0$, switch S is thrown from a to b so that the capacitor can discharge through resistance R. When a capacitor discharges through a resistance R, the charge on the capacitor decays according to

$$
q=q_{0} e^{-t / R C} \quad \text { (discharging a capacitor), }
$$

where $q_{0}\left(=C V_{0}\right)$ is the initial charge on the capacitor.
During the discharging, the current is

$$
i=\frac{d q}{d t}=-\left(\frac{q_{0}}{R C}\right) e^{-t / R C} \quad \text { (discharging a capacitor). }
$$

Figure: RC circuit

Copyright © 2014 John Wiley \& Sons, Inc. All rights reserved.
A plot shows the decline of the charging current in the circuit of the above figure.

A capacitor that is being charged initially acts like ordinary connecting wire relative to the charging current. A long time later, it acts like a broken wire.

$R C$ Circuits-Resistor and Capacitor in Series

When the switch is closed, the capacitor will begin to charge.

$R C$ Circuits-Resistor and Capacitor in Series

The voltage across the capacitor increases with time:

$$
V_{C}=\mathscr{E}\left(1-e^{-t / R C}\right)
$$

This is a type of exponential.

$R C$ Circuits-Resistor and Capacitor in Series

The charge follows a similar curve:

$$
Q=Q_{0}\left(1-e^{-t / R C}\right)
$$

This curve has a characteristic time constant:

$$
\tau=R C
$$

$R C$ Circuits-Resistor and Capacitor in Series

If an isolated charged capacitor is connected across a resistor, it discharges:

$$
Q=Q_{0} 0^{-t / R C}
$$

(a)

[^0]Ltd.

Time
(b)

SUMMARY

Emf

- The emf (work per unit charge) of the device is

$$
\left.\mathscr{E}=\frac{d W}{d q} \quad \text { (definition of } \mathscr{E}\right)
$$

Single-Loop Circuits

- Current in a single-loop circuit:

Power $\quad i=\frac{\mathscr{E}}{R+r}$,

- The rate P of energy transfer to the charge carriers is

$$
P=i V
$$

- The rate P_{r} at which energy is dissipated as thermal energy in the battery is

$$
P_{r}=i^{2} r .
$$

- The rate $P_{e m f}$ at which the chemical energy in the battery changes is

$$
P_{\mathrm{emf}}=i \mathscr{E}
$$

Series Resistance

- When resistances are in series

$$
R_{\mathrm{eq}}=\sum_{j=1}^{n} R_{j}
$$

Parallel Resistance

- When resistances are in parallel

$$
\frac{1}{R_{\mathrm{eq}}}=\sum_{j=1}^{n} \frac{1}{R_{j}}
$$

RC Circuits

- The charge on the capacitor increases according to

$$
q=C \mathscr{E}\left(1-e^{-U R C}\right)
$$

- During the charging, the current is

$$
i=\frac{d q}{d t}=\left(\frac{\mathscr{E}}{R}\right) e^{-t / R C}
$$

- During the discharging, the current is

$$
i=\frac{d q}{d t}=-\left(\frac{q_{0}}{R C}\right) e^{-t / R C}
$$

References

- Giancoli's book

- Halliday\&Resnick's book

Next Lecture

Question solutions on the topics discussed today will be done next week.

[^0]: (C) ZU\& rearson tuucanon,

