
Charging and Discharging  a Capacitor Experiment

I.  INTRODUCTION

1.1. Capacitor

Consider two conductors carrying charges of equal magnitude but of opposite sign, as 
shown in Figure1. Such a combination of two conductors is called a capacitor. The 
conductors are called plates. A potential difference V exists between the conductors due to 
the presence of the charges. Because the unit of potential difference is the volt, a potential 
difference is often called a voltage. We shall use this term to describe the potential 
difference across a circuit element or between two points in space. 

Figure 1. A capacitor consists of two conductors carrying charges 
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1.  Purpose 

 

The purpose of this experiment is to study;  

1. Ohm’s law to find the value of an 

unknown resistance,  

2. The relationship between electric current 

and resistance in the circuits with parallel 

and series combination of resistors, 

3. Kirchhoff’s rules for analyzing any circuit 

in parallel and series combination of 

resistors. 

 

1.1.  Ohm’s Law 

 

If a conductor is connected to a power supply, the 

voltage difference gives a flow of electric current 

through the conductor.  In a current carrying wire, 

the current is always along the length of the wire 

(conductor), regardless of whether the wire is 

straight or curved. The unit of current is the 

ampere and defined one coulomb per second

)/11( sCA  . The magnitude of the current 

flowing through a conductor by a voltage 

difference is determined by the electrical 

properties of the conductor. One of the most 

important properties of a conductor is its 

resistance )(R . The relationship between the 

applied voltage )(V and current )(I is given by: 

IRV           (1) 

This relationship is called Ohm’s Law. The 

voltage V is measured in volts, current I  in 

amperes and resistance R  in the unit of ohm 

)/11( AV : .   

 

For the materials obeying Ohm’s law, the 

potential difference V  across the material is 

proportional to the current I  through the 

material.  The electrical experiment set and the 

circuit elements that are going to be used in this 

experiment are given in the Figure-(1).  

 

 

 

(a) 

 

 

(b) 

Figure-1:  Basic electrical experiment set (a) and the 

circuit elements with connection cables (b). 
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n this chapter, we discuss capacitors—devices that store electric charge. Capaci-
tors are commonly used in a variety of electric circuits. For instance, they are
used to tune the frequency of radio receivers, as filters in power supplies, to

eliminate sparking in automobile ignition systems, and as energy-storing devices in
electronic flash units.

A capacitor consists of two conductors separated by an insulator. We shall see
that the capacitance of a given capacitor depends on its geometry and on the ma-
terial—called a dielectric—that separates the conductors.

DEFINITION OF CAPACITANCE
Consider two conductors carrying charges of equal magnitude but of opposite
sign, as shown in Figure 26.1. Such a combination of two conductors is called a ca-
pacitor. The conductors are called plates. A potential difference !V exists between
the conductors due to the presence of the charges. Because the unit of potential
difference is the volt, a potential difference is often called a voltage. We shall use
this term to describe the potential difference across a circuit element or between
two points in space.

What determines how much charge is on the plates of a capacitor for a given
voltage? In other words, what is the capacity of the device for storing charge at a
particular value of !V ? Experiments show that the quantity of charge Q on a ca-
pacitor1 is linearly proportional to the potential difference between the conduc-
tors; that is, The proportionality constant depends on the shape and sepa-
ration of the conductors.2 We can write this relationship as if we define
capacitance as follows:

Q " C !V
Q # !V.

26.1

The capacitance C of a capacitor is the ratio of the magnitude of the charge on
either conductor to the magnitude of the potential difference between them:

(26.1)C !
Q

!V

I

Note that by definition capacitance is always a positive quantity. Furthermore, the po-
tential difference !V is always expressed in Equation 26.1 as a positive quantity. Be-
cause the potential difference increases linearly with the stored charge, the ratio
Q /!V is constant for a given capacitor. Therefore, capacitance is a measure of a
capacitor’s ability to store charge and electric potential energy.

From Equation 26.1, we see that capacitance has SI units of coulombs per volt.
The SI unit of capacitance is the farad (F), which was named in honor of Michael
Faraday:

The farad is a very large unit of capacitance. In practice, typical devices have ca-
pacitances ranging from microfarads (10$6 F) to picofarads (10$12 F). For practi-
cal purposes, capacitors often are labeled “mF” for microfarads and “mmF” for mi-
cromicrofarads or, equivalently, “pF” for picofarads.

1 F " 1 C/V

Definition of capacitance

1 Although the total charge on the capacitor is zero (because there is as much excess positive charge
on one conductor as there is excess negative charge on the other), it is common practice to refer to the
magnitude of the charge on either conductor as “the charge on the capacitor.”
2 The proportionality between !V and Q can be proved from Coulomb’s law or by experiment.
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Figure 26.1 A capacitor consists
of two conductors carrying charges
of equal magnitude but opposite
sign.



Experiments show that the quantity of charge Q on a capacitor is linearly proportional to 
the potential difference between the conductors. The proportionality constant depends on 
the shape and separation of the conductors. We can write this relationship as Q =C ∆V if 
we define capacitance as follows:

Note that by definition capacitance is always a positive quantity. Furthermore, the po- 
tential difference V is always expressed in Equation 26.1 as a positive quantity. Because 
the potential difference increases linearly with the stored charge, the ratio Q / V is constant 
for a given capacitor. Therefore, capacitance is a measure of a capacitor’s ability to store 
charge and electric potential energy. 

From Equation 26.1, we see that capacitance has SI units of coulombs per volt. The SI 
unit of capacitance is the farad (F), which was named in honor of Michael Faraday: 

 

Any two conductors separated by an insulator (or vacuum) form a capacitor. A capacitor is 
a circuit element that accumulates charge when connected to a circuit. This accumulating 
charge gives rise to a voltage difference V across its terminals (plates). In most practical 
applications, each conductor initially has zero net charge and electrons are transferred 
from one conductor to the other. This is called charging the capacitor. Then, the two 
conductors have charges with equal magnitude and opposite sign, and the net charge on 
the capacitor as a whole remains zero. 

When we say that a capacitor has charge Q (or, a charge Q is stored on the capacitor), we 
mean that the conductor at higher potential has charge +Qand the conductor at lower 
potential has charge -Q. 

The electric field at any point in the region between the conductors is proportional to the 
magnitude Qof charge on each conductor. It follows that the potential difference Vab 
between the conductors is also proportional to Q . 

In the simple act of charging or discharging a capacitor, we find a situation in which the 
currents, voltages and powers do change with time. 
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1.2 Charging a Capacitor

Figure 2. Charging a capacitor

Let us assume that the capacitor in Figure 2 is initially uncharged. There is no current 
while switch S is open If the switch is closed at t =0, however, charge begins to flow, 
setting up a current in the circuit, and the capacitor begins to charge.Note that during 
charging, charges do not jump across the ca- pacitor plates because the gap between the 
plates represents an open circuit. Instead, charge is transferred between each plate and 
its connecting wire due to the electric field established in the wires by the battery, until the 
capacitor is fully charged. As the plates become charged, the potential difference across 
the capacitor increases. The value of the maximum charge depends on the voltage of the 
battery. Once the maximum charge is reached, the current in the circuit is zero because 
the potential difference across the capacitor matches that supplied by the battery. 

To analyze this circuit quantitatively, let us apply Kirchhoff’s loop rule to the circuit after the 
switch is closed. Traversing the loop clockwise gives 

1.3 Discharging a Capacitor

Now let us consider the circuit shown in Figure 3, which consists of a capacitor carrying an 
initial charge Q , a resistor, and a switch. The initial charge Q is not the same as the 
maximum charge Q in the previous discussion, unless the dis- charge occurs after the 
capacitor is fully charged (as described earlier). When the switch is open, a potential 
difference Q /C exists across the capacitor and there is zero potential difference across the 
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difference across the resistor. We have used the sign conventions discussed earlier
for the signs on ! and IR . For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represents a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and I are instantaneous values that depend on time (as opposed to steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit I0 is a maximum and is equal to

(current at (28.12)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q ,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting

into Equation 28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge
and current, we must solve Equation 28.11—a single equation containing two vari-
ables, q and I. The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing out of and
into the capacitor plates. This current is equal to the time rate of change of the
charge on the capacitor plates. Thus, we substitute into Equation 28.11
and rearrange the equation:

To find an expression for q , we first combine the terms on the right-hand side:

dq
dt

"
C!
RC

#
q

RC
" #

q # C!
RC

dq
dt

"
!
R

#
q

RC

I " dq /dt

Q " C!
I " 0

t " 0)I0 "
!
R

(t " 0),

Maximum current

Maximum charge on the capacitor

+ –

Resistor

Battery

Capacitor

Switch

(a)

ε
(b)

S

t < 0

R

C

(c) t > 0

ε

R

S

I
q–

+ q

Figure 28.16 (a) A capacitor in series with a resistor, switch, and battery. (b) Circuit diagram
representing this system at time before the switch is closed. (c) Circuit diagram at time

after the switch has been closed.t $ 0,
t % 0,
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4 In previous discussions of capacitors, we assumed a steady-state situation, in which no current was
present in any branch of the circuit containing a capacitor. Now we are considering the case before the
steady-state condition is realized; in this situation, charges are moving and a current exists in the wires
connected to the capacitor.

RC CIRCUITS
So far we have been analyzing steady-state circuits, in which the current is con-
stant. In circuits containing capacitors, the current may vary in time. A circuit con-
taining a series combination of a resistor and a capacitor is called an RC circuit.

Charging a Capacitor

Let us assume that the capacitor in Figure 28.16 is initially uncharged. There is no
current while switch S is open (Fig. 28.16b). If the switch is closed at how-
ever, charge begins to flow, setting up a current in the circuit, and the capacitor
begins to charge.4 Note that during charging, charges do not jump across the ca-
pacitor plates because the gap between the plates represents an open circuit. In-
stead, charge is transferred between each plate and its connecting wire due to the
electric field established in the wires by the battery, until the capacitor is fully
charged. As the plates become charged, the potential difference across the capaci-
tor increases. The value of the maximum charge depends on the voltage of the
battery. Once the maximum charge is reached, the current in the circuit is zero
because the potential difference across the capacitor matches that supplied by the
battery.

To analyze this circuit quantitatively, let us apply Kirchhoff’s loop rule to the
circuit after the switch is closed. Traversing the loop clockwise gives

(28.11)

where q/C is the potential difference across the capacitor and IR is the potential

! "
q
C

" IR # 0

t # 0,

28.4

this interpretation of the direction, however, we must con-
tinue to use this negative value for I2 in subsequent calcula-
tions because our equations were established with our origi-
nal choice of direction.

Using in Equations (3) and (1) gives

(b) What is the charge on the capacitor?

Solution We can apply Kirchhoff’s loop rule to loop bghab
(or any other loop that contains the capacitor) to find the po-
tential difference $Vcap across the capacitor. We enter this po-
tential difference in the equation without reference to a sign
convention because the charge on the capacitor depends
only on the magnitude of the potential difference. Moving
clockwise around this loop, we obtain

 $Vcap # 11.0 V

"8.00 V % $Vcap " 3.00 V # 0 

1.02 AI3 #1.38 AI1 #

I2 # "0.364 A

Because (see Eq. 26.1), the charge on the capac-
itor is

Why is the left side of the capacitor positively charged?

Exercise Find the voltage across the capacitor by traversing
any other loop.

Answer 11.0 V.

Exercise Reverse the direction of the 3.00-V battery and an-
swer parts (a) and (b) again.

Answer (a) 
(b) 30 &C.

I3 # 1.02 A;I2 # "0.364 A,I1 # 1.38 A,

66.0 &CQ # (6.00 &F)(11.0 V) #

Q # C $Vcap



resistor because I = 0. If the switch is closed at t = 0, the capacitor begins to discharge 
through the resistor.

Figure 3. Discharging a capacitor

At some time t during the discharge, the current in the circuit is I and the charge on the 
capacitor is q .  To obtain the appropriate loop equation for the circuit in Figure 3:

II.APPARATUS

Resistance, cables, multimeter, basic electrical set, capacitors

III. EXPERIMENTAL PROCEDURE

1) Set up  the circuit provided on the up side.

2) If you have one multimeter, prepare it for 2 situations. You can use your multimeter for 
measuring current and voltage.

3) Please make the connection of power supply.

4) Do not forget that Ammeters are connected in series so that the current flows through 
them. The ideal ammeter has a resistance of zero. Real ammeters have some internal 
resistance. Voltmeters are connected in parallel to resistive elements in the circuit so that 
they measure the potential dfference across (on each side of) the element.
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Because has units of time, the combination t /RC is dimensionless, as it
must be in order to be an exponent of e in Equations 28.14 and 28.15.

The energy output of the battery as the capacitor is fully charged is
After the capacitor is fully charged, the energy stored in the capacitor

is which is just half the energy output of the battery. It is left as a
problem (Problem 60) to show that the remaining half of the energy supplied by
the battery appears as internal energy in the resistor.

Discharging a Capacitor

Now let us consider the circuit shown in Figure 28.18, which consists of a capaci-
tor carrying an initial charge Q , a resistor, and a switch. The initial charge Q is
not the same as the maximum charge Q in the previous discussion, unless the dis-
charge occurs after the capacitor is fully charged (as described earlier). When the
switch is open, a potential difference Q /C exists across the capacitor and there is
zero potential difference across the resistor because If the switch is closed
at the capacitor begins to discharge through the resistor. At some time t
during the discharge, the current in the circuit is I and the charge on the capaci-
tor is q (Fig. 28.18b). The circuit in Figure 28.18 is the same as the circuit in Fig-
ure 28.16 except for the absence of the battery. Thus, we eliminate the emf !
from Equation 28.11 to obtain the appropriate loop equation for the circuit in
Figure 28.18:

(28.16)

When we substitute into this expression, it becomes

Integrating this expression, using the fact that at gives

(28.17)

Differentiating this expression with respect to time gives the instantaneous current
as a function of time:

(28.18)

where is the initial current. The negative sign indicates that the cur-
rent direction now that the capacitor is discharging is opposite the current direc-
tion when the capacitor was being charged. (Compare the current directions in
Figs. 28.16c and 28.18b.) We see that both the charge on the capacitor and the
current decay exponentially at a rate characterized by the time constant " # RC .

Q /RC # I0

I(t) #
dq
dt

#
d
dt

 (Qe$t /RC ) # $
Q

RC
 e$t /RC

q(t ) # Qe$t /RC

ln! q
Q " # $

t
RC

 

 #q

Q
 
dq
q

# $
1

RC
 #t

0
 dt

t # 0,q # Q

 
dq
q

# $
1

RC
 dt

$R 
dq
dt

#
q
C

 

I # dq /dt

$
q
C

$ IR # 0

t # 0,
I # 0.

1
2Q! # 1

2C!2,
Q! # C!2.

" # RC

Charge versus time for a
discharging capacitor

Current versus time for a
discharging capacitor

(a)

S

RC

t < 0

–Q

+Q

R

S

I
–q

+q
C

(b)
t > 0

Figure 28.18 (a) A charged ca-
pacitor connected to a resistor and
a switch, which is open at 
(b) After the switch is closed, a cur-
rent that decreases in magnitude
with time is set up in the direction
shown, and the charge on the ca-
pacitor decreases exponentially
with time.

t % 0.

28.4 RC Circuits 885

Because has units of time, the combination t /RC is dimensionless, as it
must be in order to be an exponent of e in Equations 28.14 and 28.15.

The energy output of the battery as the capacitor is fully charged is
After the capacitor is fully charged, the energy stored in the capacitor

is which is just half the energy output of the battery. It is left as a
problem (Problem 60) to show that the remaining half of the energy supplied by
the battery appears as internal energy in the resistor.

Discharging a Capacitor

Now let us consider the circuit shown in Figure 28.18, which consists of a capaci-
tor carrying an initial charge Q , a resistor, and a switch. The initial charge Q is
not the same as the maximum charge Q in the previous discussion, unless the dis-
charge occurs after the capacitor is fully charged (as described earlier). When the
switch is open, a potential difference Q /C exists across the capacitor and there is
zero potential difference across the resistor because If the switch is closed
at the capacitor begins to discharge through the resistor. At some time t
during the discharge, the current in the circuit is I and the charge on the capaci-
tor is q (Fig. 28.18b). The circuit in Figure 28.18 is the same as the circuit in Fig-
ure 28.16 except for the absence of the battery. Thus, we eliminate the emf !
from Equation 28.11 to obtain the appropriate loop equation for the circuit in
Figure 28.18:

(28.16)

When we substitute into this expression, it becomes

Integrating this expression, using the fact that at gives

(28.17)

Differentiating this expression with respect to time gives the instantaneous current
as a function of time:

(28.18)

where is the initial current. The negative sign indicates that the cur-
rent direction now that the capacitor is discharging is opposite the current direc-
tion when the capacitor was being charged. (Compare the current directions in
Figs. 28.16c and 28.18b.) We see that both the charge on the capacitor and the
current decay exponentially at a rate characterized by the time constant " # RC .

Q /RC # I0

I(t) #
dq
dt

#
d
dt

 (Qe$t /RC ) # $
Q

RC
 e$t /RC

q(t ) # Qe$t /RC

ln! q
Q " # $

t
RC

 

 #q

Q
 
dq
q

# $
1

RC
 #t

0
 dt

t # 0,q # Q

 
dq
q

# $
1

RC
 dt

$R 
dq
dt

#
q
C

 

I # dq /dt

$
q
C

$ IR # 0

t # 0,
I # 0.

1
2Q! # 1

2C!2,
Q! # C!2.

" # RC

Charge versus time for a
discharging capacitor

Current versus time for a
discharging capacitor

(a)

S

RC

t < 0

–Q

+Q

R

S

I
–q

+q
C

(b)
t > 0

Figure 28.18 (a) A charged ca-
pacitor connected to a resistor and
a switch, which is open at 
(b) After the switch is closed, a cur-
rent that decreases in magnitude
with time is set up in the direction
shown, and the charge on the ca-
pacitor decreases exponentially
with time.

t % 0.

28.4 RC Circuits 885

Because has units of time, the combination t /RC is dimensionless, as it
must be in order to be an exponent of e in Equations 28.14 and 28.15.

The energy output of the battery as the capacitor is fully charged is
After the capacitor is fully charged, the energy stored in the capacitor

is which is just half the energy output of the battery. It is left as a
problem (Problem 60) to show that the remaining half of the energy supplied by
the battery appears as internal energy in the resistor.

Discharging a Capacitor

Now let us consider the circuit shown in Figure 28.18, which consists of a capaci-
tor carrying an initial charge Q , a resistor, and a switch. The initial charge Q is
not the same as the maximum charge Q in the previous discussion, unless the dis-
charge occurs after the capacitor is fully charged (as described earlier). When the
switch is open, a potential difference Q /C exists across the capacitor and there is
zero potential difference across the resistor because If the switch is closed
at the capacitor begins to discharge through the resistor. At some time t
during the discharge, the current in the circuit is I and the charge on the capaci-
tor is q (Fig. 28.18b). The circuit in Figure 28.18 is the same as the circuit in Fig-
ure 28.16 except for the absence of the battery. Thus, we eliminate the emf !
from Equation 28.11 to obtain the appropriate loop equation for the circuit in
Figure 28.18:

(28.16)

When we substitute into this expression, it becomes

Integrating this expression, using the fact that at gives

(28.17)

Differentiating this expression with respect to time gives the instantaneous current
as a function of time:

(28.18)

where is the initial current. The negative sign indicates that the cur-
rent direction now that the capacitor is discharging is opposite the current direc-
tion when the capacitor was being charged. (Compare the current directions in
Figs. 28.16c and 28.18b.) We see that both the charge on the capacitor and the
current decay exponentially at a rate characterized by the time constant " # RC .

Q /RC # I0

I(t) #
dq
dt

#
d
dt

 (Qe$t /RC ) # $
Q

RC
 e$t /RC

q(t ) # Qe$t /RC

ln! q
Q " # $

t
RC

 

 #q

Q
 
dq
q

# $
1

RC
 #t

0
 dt

t # 0,q # Q

 
dq
q

# $
1

RC
 dt

$R 
dq
dt

#
q
C

 

I # dq /dt

$
q
C

$ IR # 0

t # 0,
I # 0.

1
2Q! # 1

2C!2,
Q! # C!2.

" # RC

Charge versus time for a
discharging capacitor

Current versus time for a
discharging capacitor

(a)

S

RC

t < 0

–Q

+Q

R

S

I
–q

+q
C

(b)
t > 0

Figure 28.18 (a) A charged ca-
pacitor connected to a resistor and
a switch, which is open at 
(b) After the switch is closed, a cur-
rent that decreases in magnitude
with time is set up in the direction
shown, and the charge on the ca-
pacitor decreases exponentially
with time.

t % 0.
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2.2.   Charging a Capacitor 

 

 

Figure-(14) shows a simple circuit for charging a 

capacitor.  A circuit such as this that has a 

resistor and a capacitor in series is called an 

CR �  circuit. Initially the switch S  is open and 

no current passes through the circuit. When the 

switch S is closed at 0 t , a current I starts to 

flow into the circuit, and the charge q starts to 

accumulate on the capacitor. Now, we can 

determine the behavior of )(),( tqtI  and the 

voltage across the capacitor CV  as a function 

of time. At any instant of time t  after closing the 

switch, Kirchhoff’s loop rule gives the sum of 

voltages: 

VtVtV RC  � )()(    (15) 

Substituting for CV from Eq.(13): 

C
tqVC
)(

     (16) 

 

 

And then recalling that IRVR  , we get: 

RtI
C
tqV )()(
�     (17) 

Solving Eq.(17) for )(tI , we get: 

RC
tq

R
VtI )()( �    (18) 

Since )(tI is just the rate of change of )(tq : 

dt
tdqtI )()(      (19) 

Then substituting this into Eq.(18), we find: 

RC
tq

R
V

dt
tdq )()(

�    (20) 

 

Equation-(20) is a differential equation for )(tq

and it can be shown that the solution for the 

equation is given by: 

)1()( / RCteVCtq ��  (21) 

    

Here, the voltage of the power supplyV , resistor

R , and capacitance C  are just constants, i.e., 

they are time-independent. 

To find the current )(tI  as a function of time, 

remember that the current dttdqtI /)()(  , so 

differentiating Eq. (21), we get: 

 

RCte
R
V

dt
tdqtI /)()( �   (22) 

 

 

 

 

Figure-14: Charging an initially uncharged capacitor. Switch 

initially open. When the switch (S) closed, the charge on the 

capacitor increases over time while current decreases.  

Rentech Experiments in Electricity 

 

42 
 

Volume-2  

 

 

 

 

1. Construct the RC  circuit shown in the 

Figure-(34) to experimentally obtain the 

charging and discharging curves of the 

current I . 

Resistance Capacitor 

)( :kR  )( FC P  

33 1000 

 

1.1. Note that the capacitor used in this 
experiment has polarities (positive and 
negative terminals) so take the polarities 
into account when you connect it to the 
circuit. 

1.2. Keep the power supply off and bring the switch 

to its neutral position.  

 

 

 

 

 

 

2. Now turn on the power supply by keeping 

the switch at the neutral position. 

 

2.1. Set the power supply output voltage V  to 5 
volts. 

2.2. Measure and record the output voltage V  

across the terminals of the power supply. 

2.3. Now, connect a piece of wire to the two 

terminals of the capacitor by forming a short 

circuit across them. This will eliminate the 

capacitor from the circuit. 

2.4. Bring the switch to the charging position 

(Figure-35) and measure the current I  in the 

circuit.  

2.5. Record the current in the data Table-(9). Do you 

find a constant or varying current?. 

 

3. For the charging the capacitor, bring the 

switch to the neutral position and then 

remove the wire from the terminals of the 

capacitor. 

 
3.1. Adjust the stopwatch to zero second. 

3.2. Bring the switch to the charging position and 

simultaneously start the clock. 

 

 

5.  Experimental Procedure 

5.1. EXPERIMENTAL PROCEDURE 

Part-4: Charging and Discharging a Capacitor 

 

Figure-34: Experimental set-up of the RC circuit for the 

charging and discharging a capacitor. 

 

Figure-35: Switch positions on the electrical experimental 

set. 



5) In this experiment, the current flowing through a resis- tor will be measured as the 
voltage across the resistor is varied.  So please fill the Tabe 1 for this circuit.

6) At time t=0 when we first close the switch S in the circuit, the capacitor has no charge, 
and so the current I will be  determined by the resistor alone. The  capacitor here acts as a 
short circuit.  At any later time, the charge will start to increase while the current decrease.  
Then, q (t) will reach the constant value of q = VC . At this instant the capacitor  will be fully 
charged. The current, on the other hand, will be zero at this instant. At this step try to fill 
the Table 1.

7)  Find the experimental time constant 𝜏 of the  circuit from the I vs t graphs. Find it from 

both the charging and discharging graphs. Then, compare experimental time constant 𝜏  
with its theoretical value obtained by 

𝜏 =RC 

Ref.

1) Serway, R, Beichner,R.  Physics for Scientists ans engineers with modern physics, Fifth 
edition. 2000.
2)  Rentech.Experiments in electricity, student guide. 2013.

Rentech Experiments in Electricity 

 

45 
 

Volume-2  

 

 

1. For the RC circuit with a piece of wire 

connected across the capacitor:  

1.1. Measure and report below the current 

I  flowing in the circuit. 

1.2. Measure the voltage V  across the 

terminals of the power supply. 

 

Resistance Capacitor 

)( :kR  )( FC P  

. . . . . . . . . . 

 

 
Table-9: The current in the short circuit. 

Measured Measured Calculated 

V  I  
R
VI   

V5  . . . . . . . . . . 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. The data of I  and t  measurements during 

the charging of the capacitor will be given 

by the Table (10). 
 

 

3. The data values obtained during the 

discharging of the capacitor will be filled in 

the data Table-(11).  
 

 

 

 

 

 

 

5.2. LABORATORY REPORT 

Part-4: Charging and Discharging a Capacitor 
Table-10: The data values during the charging of the 

capacitor. 

t (sec) 
Measured 

t (sec) 
Measured 

)( AI P  )( AI P  

0  . . . . .   

    

    

    

    

    

    

    

Table-11: The data values during the discharging of the 

capacitor. 

t (sec) )( AI P  t (sec) )( AI P  

0  . . . . .   

    

    

    

    

    

    

    

Table1 Charging a capacitor

t(second) Measured 
current(A)

0

.

.

.

Table2 Discharging a capacitor

t(second) Measured 
current(A)

0

.

.

.


