FEEDBACK CONTROL SYSTEMS

LECTURE NOTES-6



Time Response

The output response of a system is the sum of two responses: the forced response and
the natural response

The poles of a transfer function are (1) the values of the Laplace transform variable,
s, that cause the transfer function to become infinite or (2) any roots of the denominator
of the transfer function that are common to roots of the numerator.

If a factor of the denominator can be canceled by the same factor in the numerator, the
root of this factor no longer causes the transfer function to become infinite.

The zeros of a transfer function are (1) the values of the Laplace transform variable,
s, that cause the transfer function to become zero, or (2) any roots of the numerator
of the transfer function that are common to roots of the denominator.

the roots of the numerator are values of s that make the transfer function zero and are
thus zeros

If a factor of the numerator can be canceled by the same factor in the denominator, the
root of this factor no longer causes the transfer function to become zero
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A pole of the input generates the forced response (pole at the origin generated
from a step function at the output)

A pole at the transfer function generated natural response (the pole at -5
generated exp(-5t))

A pole on the real axis generated an exponential response, where a pole location
IS at real axis. Thusi the farther to the left a polse is on the negative real axis, the
faster the exponential transient response will decay to zero

The zeros and poles generate amplitudes for both forced and natural responses
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Input pole generates forced response



First Order System
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1
s

-1/a is called time constant or
exponential frequency

- Time to decay 37% of initial value
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General Second Order System
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Underdamped Second Order Systems
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Pole-Zero Cancellation:

For three pole system, a zero term cancel out T(s) = KM

M(SZ +as+h)

If zero —z very close to —p3 pole
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The pole at -4.01 is very close to the zero at -4
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