The Components of Matter

- 2.LEARNING and UNDERSTANDING CHEMISTRY and ENGINEERING TERMINILOGY
- Elements, Compounds, and Mixtures: An Atomic Overview
- The Observations That Led to an Atomic View of Matter
- Dalton's Atomic Theory
- The Observations That Led to the Nuclear Atom Model
- The Atomic Theory Today
- Elements: A First Look at the Periodic Table
- Compounds: Introduction to Bonding
- Compounds: Formulas, Names, and Masses
- Mixtures: Classification and Separation

The Atom

Atomic Structure - the atom contains charged particles

Nucleus (positively charged protons & neutral neutrons) Electrons (negatively charged)

The atom has a central core, the nucleus, which contains most of the atom's mass (neutrally charged neutrons & positively charged protons)

Electrons are very light particles that "encircle" the nucleus as a negatively charged cloud at very high speeds

Physical Properties of the Atom

Properties of the Electron, Proton, and Neutron

Particle	Mass (kg)	Charge (C)	Mass (amu)*	Charge (e)
Electron	9.10939×10^{-31}	-1.60218×10^{-19}	0.00055	-1
Proton	1.67262×10^{-27}	$+1.60218 \times 10^{-19}$	1.00728	+1
Neutron	1.67493×10^{-27}	0	1.00866	0

*The atomic mass unit (amu) equals 1.66054×10^{-27} kg; it is defined in Section 2.4.

Atomic Symbols - First Glance
 Atomic symbols represent a shorthand way of expressing atoms of different elements
 Common examples (1 or 2 letter notation):

- H Hydrogen
- C Carbon
- O Oxygen
- N Nitrogen
- Fe Iron
- Mn Manganese
- Hg Mercury
- Na Sodium
- Al Aluminum
- Cl Chlorine

The names of many elements have Latin roots

Nuclear Structure

- The nucleus is composed of two different types of particles
 - Protons nuclear particle having a positive charge and mass 1800 times an electron
 - Neutrons nuclear particle having a mass almost identical to a proton but no electric charge
 - Nuclide symbol notation representing the nuclear composition of each element

Mass Number (A) (protons + neutrons)

Neutrons (N) (N = A - Z = 14 - 7 = 7)

Atomic Number (Z), (protons)

Atomic Symbol

Isotopes

Isotopes

Atoms whose nuclei have the <u>same number of</u> <u>protons</u> (atomic number, Z) but <u>different</u> <u>numbers of neutrons</u> (N), thus <u>different</u> mass numbers (A)

Naturally occurring isotopes of phosphorus

 $\frac{31}{15}P$

Phosphorus-31

Mass No.	(A) - 31
Atomic No.	(Z) - 15
No. Neutrons	(N) - 16

 $\begin{array}{c} 32\\ 15\end{array} \\ Phosphorus-32 \\ Mass No. (A) - 32 \\ Atomic No. (Z) - 15 \\ No. Neutrons (N) - 17 \end{array}$

Practice Problem How many neutrons are in carbon-14? $\frac{14}{C}$ a. 5 b. 6 c. 7 d. 8 e. 9

Ans: d (8)

The Mass Number (A) for C-14 is 14 The Atomic Number (Z) is 6 (6 protons) The No. of Neutrons (N) is A - Z = 14 - 6 = 8

Practice Problem How many electrons are in one atom of fluorine-19? $19_{9}F$

a. 2 b. 8 c. 9 d. 10 e. 19

Ans: c (9)

The Mass Number (A) is 19 The Atomic Number (Z) is 9 (9 protons) ∴ For a neutral atom with 9 protons,

there must be 9 electrons

Practice Problem How many electrons are in the lead (IV) (Pb^{+4}) ion? $^{207}_{82}$ Pb $\rightarrow ^{207}_{82}$ Pb⁺⁴ + 4e⁻ a. 82 b. 85 c. 80 d. 78 e. none of the above Ans: d (78) Neutral Atom – 82 protons & 82 electrons Cation (+4) has four less electrons than neutral atom (82 - 4 = 78)

Practice Problem

Do both members of the following pairs have the same number of Protons? Neutrons? Electrons?

a.
$${}^{3}_{1}H$$
 and ${}^{3}_{2}H$ b. ${}^{14}_{6}C$ and ${}^{15}_{7}N$ c. ${}^{19}_{9}F$ and ${}^{18}_{9}F$

a) These have different numbers of protons, neutrons, and electrons, but have the same atomic mass number A=3

b) These have the same number of neutrons, A - Z = N (14 - 6 = 8) (15 - 7 = 8) but different number of protons and electrons $6 p 6 e^{-} & 7p 7 e^{-}$ a) These have the same number of protons (Z = 9) and electrons (9), but different number of neutrons 19 - 9 = 10 & 18 - 9 = 9 Postulates of Atomic Theory
Dalton's Atomic Theory

> All matter consists of atoms

Atoms of one element *cannot* be converted into atoms of another element

Atoms of a given element are *identical in mass* and other properties and are different from atoms of any other element

Compounds result from the chemical combination of a specific ratio of atoms of different elements Postulates of Atomic Theory
Theory vs Mass Laws

- Mass Conservation
 - Atoms cannot be created or destroyed
 - Each atom has a fixed mass that does not change during a chemical reaction

Laws of Matter Law of Mass Conservation

- Mass Conservation
 - The total masses of the substances involved in a chemical reaction does not change
 - The number of substances can change and their properties can change

180 g glucose + 192 g oxygen \rightarrow 264 g CO₂ + 108 g H₂O

372 g before reaction \rightarrow 372 g after reaction

Laws of Matter Law of Definite Composition (Multiple Proportions)

Multiple Proportions or Constant Composition

A pure compound, whatever its source, always contains definite or constant proportions of the elements by mass

CaCO₃ (Calcium Carbonate)

Analysis by Mass	Mass Fraction	Percent by Mass
(grams/20.0 g)	(parts/1.00 part)	(parts/100 parts)
8.0 g calcium	8.0/20.0 = 0.40 calcium	40% calcium
2.4 g carbon	2.4/20.0 = 0.12 carbon	12% carbon
9.6 g oxygen	9.6/20.0 = 0.48 oxygen	48% oxygen
20.0 g	1.00 part by mass	100% by mass

Postulates of Atomic Theory

- Multiple Proportions
 - Atoms of an element have the same mass and are indivisible
 - The masses of element B that combine with a fixed mass of element A give a small whole number ratio because different numbers of B combine with different numbers of A in different compounds

Law of Multiple Proportions (Dalton)

- If elements A & B react to form more than one compound, different masses of "B" that combine with a fixed mass of "A" can be expressed as a ratio of SMALL WHOLE NUMBERS
- Ex. Assume two compounds containing just Carbon and Oxygen with the following relative compositions

Carbon Oxide (I): 57.1 % Oxygen and 42.9 % Carbon

Carbon Oxide (II): 72.7 % Oxygen and 27.3 % Carbon

Mass Ratios: Oxide (I) = 57.1 O / 42.9 C = 1.33 g O / g C

Oxide (II) = 72.7 O / 27.3 C = 2.66 g O / g C

Ratio Oxide (II) / Oxide (I) = 2.66 / 1.33 = 2 / 1

- ∴ For a given amount of C, Oxide II contains twice the Oxygen of Oxide I
- The ratio of Oxygen atoms to Carbon atoms in Oxide I is 1:1 (CO) The ratio of Oxygen atoms to Carbon atoms in Oxide II is 2:1 (CO₂)

Ratios, Masses, Molecules, Moles, Formulas
 Early theories and relatively precise measurements of reactants and products in chemical reactions suggested that *Elements* combine in *fixed ratios* by mass to form compounds

The fixed ratio theory of elemental combination has been confirmed by direct measurements of the masses of protons & neutrons (atomic weights), the evolution of the modern atomic theory, and the development of the *Periodic Table*, which lists the *Molecular Weights* of the elements

The ratios of the Molecular Weights of elements are the same as the ratios of the weighed masses of elements and compounds in early experiments

Ratios, Masses, Molecules, Moles, Formulas

Example:

The relationship between the fixed mass ratios of elements in compounds and the molecular weights of compounds represented in the Periodic Table can be demonstrated in the following example

A sample of Mn_3O_4 is composed of 5.7276 g Manganese (Mn) and 2.2233 g Oxygen (O). Not using the Periodic Table, compute the grams of Oxygen in a sample of MnO_2 that contained 4.2159 g of Manganese

Atomic Weight (Physical Property of Atoms)

Atomic mass units (amu) - mass standard relative to <u>Carbon-12</u>

- > By definition C-12 is assigned 12 amu
- 1 amu = 1/12 mass of a Carbon-12 atom
- ▶ 1 amu = 1.66054 x 10⁻²⁴ g
- ➤ C-12 = 12 x 1.66054 x 10⁻²⁴ = 1.99265 x 10⁻²³g

The atomic mass of one atom expressed in atomic mass units (amu) is <u>numerically the same</u> as the mass of 1 mole of the element expressed in grams (Chapter 3)

C-12 = 12 amu = 12 g/mole

Atomic (mass) weight of a naturally occurring element takes into account the atomic masses of all naturally occurring isotopes of the element

The composite atomic weight of naturally occurring Carbon as reported in the periodic table is 12.0107 amu = 12.0107 g/mol

5/20/2020

Calculating Average Atomic Weights Example: Chlorine Chlorine occurs naturally as CI-35 and CI-37

Isotope	Atomic Mass (amu)	Abundance
Cl-35	34.96885	0.75771
Cl-37	36.96590	0.24229

Avg Mass = $(34.96885 \times 0.75771) + (36.96590 \times 0.24229)$

= 35.453 amu (Value listed in Periodic Table)

NOTE: In computing average atomic weight of an element with more than one isotope, the atomic mass of each isotope is multiplied by the fractional abundance of that isotope

5/20/2020

Practice Problem The naturally occurring isotopes of Silver (Z = 47) are ¹⁰⁷Ag and ¹⁰⁹Aa Calculate the atomic mass of Ag from the Mass data below: Isotope Mass (amu) Abundance(%) ¹⁰⁷Ag 106.90509 51.84 ¹⁰⁹Ag 108.90476 48.16 PLAN: Find the weighted average of the isotopic masses SOLUTION: > mass portion from ¹⁰⁷Ag = 106.90509 amu x 0.5184 = 55.42 amu > mass portion from 109 Ag = 108.90476 amu x 0.4816 = 52.45 amu > Atomic mass of Ag = 55.42 amu + 52.45 amu = 107.87 amu $_{5/20/2020}$ > Atomic mass (MW) of Ag in Periodic Table = 107.8

22

Practice Problem

Copper has two naturally occurring isotopes

⁶³Cu (isotopic mass – 62.9396 amu)

⁶⁵Cu (isotopic mass – 64.9278 amu)

If the atomic mass (Molecular Weight) of Copper is 63.546 amu, what is the % abundance of each isotope?

Let: x equal the fractional abundance of ⁶³Cu and

(1 - x) equal the fractional abundance of ⁶⁵Cu

- $\therefore 63.546 = 62.9396 (x) + 64.9278 (1 x)$
 - 63.546 = 62.9396 (x) + 64.9278 64.9278(x)
 - 63.546 = 64.9278 1.9882(x)
 - 1.9882(x) = 1.3818

x = 0.69500

1 - x = 1 - 0.69500 = 0.30500

% abundance ${}^{63}Cu = 69.50\%$

% abundance ⁶⁵Cu = 30.50%

The Periodic Table of Elements

- In 1869 Dmitri Mendeleev and J. Meyer proposed the periodic table of elements
- Periodic Table arrangement of elements in rows and columns featuring the commonality of properties
 - Period Horizontal Row (1 7)

Group (Family) – Column; each given a Roman Numeral (IA, 2A, IB - VIIIB, .. IIIA - VIIIA)

- Element Group Classification
 - > A (main group elements)
 - > B (transition elements and inner-transition elements)
 - Lanthanides
 - Actinides

A Modern Form of the Periodic Table

	1	MAIN-(ELEM	GROUF	0												MAIN- ELEN	GROUF IENTS	þ	
		1A (1))										(8A (18)
	1	1 H 1.008	2A (2)	,	Atomic number						etals (ma etals (tra etals (inr	ain-grou Insition)	p)	3A (13)	4A (14)	5A (15)	6A (16)	7A (17)	2 He 4.003
	2	3 Li 6.941	4 Be 9.012	9	9.012 Atomic mass (amu) Metalloids Nonmetals							5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18		
	3	11 Na 22.99	12 Mg 24.31	3B (3)	TRANSITION ELEMENTS 3B 4B 5B 6B 7B 8B 1B 2B (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)						2B (12)	13 AI 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 CI 35.45	18 Ar 39.95		
Period	4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.41	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
	5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
	6	55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
	7	87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (263)	105 Db (262)	106 Sg (266)	107 Bh (267)	108 Hs (277)	109 Mt (268)	110 Ds (281)	111 Rg (272)	112 Cn (285)	113 (284)	114 (289)	115 (288)	116 (292)		118 (294)
					IN	INER T		 FION EI	 _EMEN	 TS									
	6	Lanth	anides	58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (145)	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0		
	7	Actini	des	90 Th 232.0	91 Pa (231)	92 U 238.0	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)		

5/20/2020

25

Features of Periodic Table
Most elements are metals (blue boxes)

Metal – substance having luster and a good conductor of electricity

Nonmetals (tan)

Nonmetal – substance that does not have features of a metal

A few are metalloids (green)

Metalloid – substances having both metal and nonmetal properties Inorganic Compounds
 Inorganic Chemistry focuses on all elements and compounds except organic (carbon based) compounds

- Catalysts
- Electronic Materials
- Metals and Metal Alloys
- Mineral Salts

With the explosion in biomedical and materials research, the dividing line between Organic and Inorganic branches is greatly diminished

Organic Compounds

- Organic Chemistry is the study of compounds of Carbon, specifically those containing Hydrogen, Oxygen, Nitrogen, Halides, Sulfur, Phosphorus
- Organic compounds number in the millions and represent an extremely diverse group of products used in our society
 - Plastics
 - Dyes

5/20/2020

- Polymers
- Fuels (gasoline, diesel, propane, Alcohol)
- Herbicides, Pesticides
- Pharmaceuticals (drugs)
- Bio-molecules (DNA, proteins, fats, sugars, etc.)

A Biological Periodic Table

1A (1)		Building-block elements							ents						Q		8A (18)
Н	2A (2)	A Major minerals										3A (13)	4A (14)	5A (15)	6A (16)	7A (17)	
		Trace elements								в	С	Ν	0	F			
Na	Mg	3B (3)	4B (4)	5B (5)	6B (6)	7B (7)	(8)	- 8B - (9)	(10)	1B (11)	2B (12)		Si	Р	S	СІ	
к	Са			v	Cr	Mn	Fe	Co	Ni	Cu	Zn			As	Se		
					Мо								Sn			Ι	

Building Block Elements: Elements that make up the major portion of Biological compounds (99% of atoms, 96% mass of body weight) in organisms

Major Minerals (macronutrients): 2% of Mass in organisms

Trace Elements (micronutrients): <<<1%; (Iron(Fe) 0.005%)

Principal Families of Organic Compounds

	Alkane	Alkene	Alkyne	Aromatic	Halo alkane	Alcohol	Ether
Functional Group	C—H and C—C bonds	>c=c<	C==C	Aromatic Ring	—¢——;	—с́—ён	ç <u>ē</u> ç
General Formula	RH	RCH=CH ₂ RCH=CHR R ₂ C=CHR R ₂ C=CR ₂	RC≡CH RC≡CR'	ArH	RX	ROH	ROR'
Specific Example	СH ₃ CH ₃	H ₂ C=CH ₂	нс≕сн		CH₃CH₂Cl	CH₃CH₂OH	CH3OCH3
IUPAC Name	Ethane	Ethene	Ethyne	Benzene	Chloro- ethane	Ethanol	Methoxy- methane
Common Name	Ethane	Ethylene	Acetylene	Benzene	Ethyl chloride	Ethyl alcohol	Dimethyl ether

5/20/2020

Principle Families of Organic Compounds

	Amine	Aldehyde	Ketone	Carboxylic Acid	Ester	Amide	Nitrile
Functional Group	—	Ö –C –H		С_ Öн	 		—C≡N:
General Formula	RNH2 R2NH R3N	O RCH or RCHO	O II RCR' or RCOR'	O RCOH or RCOOH or RCO ₂ H	O H RCOR' or RCOOR' or RCO ₂ R'	O H RCNH ₂ O H RCNHR' O H RCNR'R"	RCN
Specific Example	CH3NH2	О СН ₃ СН (СН ₃ СНО)	O ■ CH₃CCH₃ (CH₃COCH₃)	О СН ₃ СОН (СН ₃ СО ₂ Н)	O II CH ₃ COCH ₃ (CH ₃ CO ₂ CH ₃)	O CH ₃ CNH ₂ (CH ₃ CONH ₂)	CH₃C≡N
IUPAC Name	Methan- amine	Ethanal	Propanone	Ethanoic Acid	Methyl ethanoate	Ethanamide	Ethanenitrile
Common Name	Methyl- amine	Acetal- dehyde	Acetone	Acetic Acid	Methyl acetate	Acetamide	Acetonitrile

Elements, Compounds and Atomic Symbols

 <u>Elements</u> are unique combinations of protons, neutrons, electrons that exist in nature as populations of atoms

A <u>Molecule</u> is an independent structure consisting of two or more atoms of the <u>same or different elements</u> chemically bound together

A <u>compound</u> is a type of matter composed of two or more <u>different</u> elements that are <u>chemically</u> bound together

Recall, a mixture is a group of two or more substances (compounds) physically intermingled, but not chemically combined

Compounds – Chemical Bonding In nature an overwhelming majority of elements occur in *chemical combination* with other elements – compounds Relatively few elements occur in nature in free form: Noble Gases: He, Ne, Ar, Kr, Xe, Rn Non-metals: O₂, N₂, S₂, C

Metals: Cu, Ag, Au, Pt

 Compounds are substances composed of two or more elements in *fixed* proportions

 Compounds are formed by the interaction (bonding) of the valence electrons between atoms

Chemical & Molecular Formulas

- Chemical Formulas atomic symbols with subscripts to display the relative number and type of each atom in a molecule (compound)
- The *Elements* in a compound are present in a <u>fixed mass</u> ratio as denoted by numerical subscripts
- Examples:

H₂S NaHCO₃ C₇H₅N₃O₆ NH₃ H₂SO₄ NaCl C_2H_6 CO CO_2

 H_2O

Hydrogen Sulfide (swamp gas) Sodium Bicarbonate (antacid) Trinitrotoluene (TNT) (explosive) Ammonia Sulfuric Acid Sodium Chloride (Common Salt) Ethane Carbon monoxide Carbon dioxide Water (Dihydrogen Oxide)

Chemical & Molecular Formulas

- Molecule one or more atoms chemically bonded together in one *formula unit*
- Empirical Formula Shows the smallest whole number ratio of numbers of atoms in a molecule
- Molecular formula Shows <u>actual</u> No. atoms in molecule
- Structural formula chemical formula showing how the atoms are bonded together in a molecule

Ex. Hydrogen Peroxide (H_2O_2) Empirical Formula: HO; Molecular Formula: H_2O_2 Structural: $H_1O - H_1$

Molecular and Structural Formulas and Molecular Models

	Water	Ammonia	Ethanol
Molecular formula	H ₂ O	NH ₃	C ₂ H ₆ O
Structural formula	Н-О-Н	H-N-H H	Н Н H-C-C-O-H H H
Molecular model (ball-and-stick type)			
Molecular model (space-filling type)		6	

36

Practice Problem

Match the molecular model with the correct chemical formula: CH₃OH, NH₃, KCl, H₂O

(a) $-H_2O$ (b) -KCI (c) $-CH_3OH$ (d) $-NH_3$

Practice Problem The total number of atoms in one formula unit of $(C_2H_5)_4NCIO_4$ (Tetraethylammonium Perchlorate) is:

a. 5 b. 13 c. 14 d. 34 e. 36 Ans: d [(2+5)*4]+1+1+4 = 28+6 = 34

Molecular Masses & Chemical Formulas

- The Molecular Mass(MM or FM), also referred to as Molecular Weight (MW), of a compound is the sum of the atomic masses (weights) of all atoms in one formula unit of the compound
- The term "Molecular Mass(MM)" is often associated with compounds held together by "Covalent" bonds
- The term "Formula Mass(FM)" also refers to the molecular weight of a compound, but its formal definition refers to the sum of the atomic weights of the atoms in a formula unit of an <u>ionic</u> bonded compound
- The computation of Molecular or Formula masses is <u>mathematically</u> the same

Practice Problem Determine the Molecular Mass of Water (H_2O) Molecular Mass (Molecular Weight) = sum of atomic masses $H_{2}O$ $[2 \times \text{atomic mass hydrogen (H)}] = 2 \times 1.00794 \text{ amu}$ $[1 \times \text{atomic mass of oxygen (O)}] = 1 \times 15.9994 \text{ amu}$ 2.01588 amu + 15.9994 amu = 18.0152 amu

Compounds – Chemical Bonding (IONS)

- Ions are formed when atoms or groups of atoms gain or lose valence <u>electrons</u>
- An ion resulting from the gain or loss of valence electrons has the same number of electrons as the nearest "Noble" gas (Group VIIIA)
- Monatomic Ions A single atom with an excess or deficient number of electrons
- Polyatomic ions groups of atoms with an excess or deficient number of electrons
- Cations positively charged ions
- Anions negatively charged ions

Monatomic Cations & Anions

Со	mmon C	Cations	Trans	ition Eler	ment Cations	Anions			
Charge	Formula	Name	Charge Formula Name		Charge	Formula	Name		
+1	H+	Hydrogen	+2	Cd ²⁺	Cadmium	-1	H-	Hydride	
+1	Li+	Lithium	+2	Cr ²⁺	Chromium(II)	-1	F-	Fluoride	
+1	Na+	Sodium	+3	Cr ³⁺	Chromium(III)	-1	Cl-	Chloride	
+1	K+	Potassium	+2	Mn ²⁺	Manganese (II)	-1	Br	Bromide	
+1	Cs+	Cesium	+2	Fe ²⁺	Iron(II)	-1	I-	Iodide	
+2	Mg ²⁺	Magnesium	+3	Fe ³⁺	Iron(III)	-2	0 ₂ -	Oxide	
+2	Ca ²⁺	Calcium	+2	Co ²⁺	Cobalt(II)	-2	S ₂ -	Sulfide	
+2	Sr ²⁺	Strontium	+3	Co ³⁺	Cobalt(III)				
+2	Ba ²⁺	Barium	+2	Ni ²⁺	Nickel(II)				
+3	Al ³⁺	Aluminum	+1	Cu+	Copper(I)				
			+2	Cu ²⁺	Copper(II)				
			+2	Zn ²⁺	Zinc				
			+1	Hg ₂ ²⁺	Mercury(I)				
			+2	Hg ²⁺	Mercury(II)				

Polyatomic Ions

Some Common Polyatomic Ions

Name	Formula	Name	Formula
Mercury(I) or mercurous	Hg ₂ ²⁺	Nitrite	NO_2^-
Ammonium	NH_4^+	Nitrate	NO ₃
Cyanide	CN ⁻	Hydroxide	OH ⁻
Carbonate	CO_3^{2-}	Peroxide	O_2^{2-}
Hydrogen carbonate	HCO ₃	Phosphate	PO_4^{3-}
(or bicarbonate)		Monohydrogen phosphate	HPO ₄ ²⁻
Acetate	$C_2H_3O_2^-$	Dihydrogen phosphate	$H_2PO_4^{-}$
Oxalate	$C_2 O_4^{2-}$	Sulfite	SO ₁ ²⁻
Hypochlorite	CIO ⁻	Sulfate	SO_4^{2-}
Chlorite	ClO ₂ ⁼	Hydrogen sulfite	HSO ₃
Chlorate	ClO ₃ ⁻	(or bisulfite)	
Perchlorate	ClO_4^-	Hydrogen sulfate	HSO ₄
Chromate	CrO_4^{2-}	(or bisulfate)	
Dichromate	$Cr_2O_7^{2-}$	Thiosulfate	$S_2O_3^{2-}$
Permanganate	MnO ₄		

Nomenclature Charges & Ionic Compounds

Nomenclature – systematic way of naming things

- > Rules for charges on monatomic ions
 - Elements in "A "groups I, II, III & IV have charges equal to group no; e.g., Na⁺, Mg^{2+,} Al³⁺; Pb⁴⁺
 - Group IV elements also commonly have ions of charge +2; e.g., Pb²⁺, Sn²⁺
 - For nonmetals in groups V-VII, the charge is: ([V-VII] – 8): e.g., N^{3- (5-8)}, O^{2- (6-8)}, Cl^{- (7-8)}

 Transition elements (B group), usually have a charge of 2+ but typically form more than one ion

Predicting the Ion and Element Forms Problem: What monatomic ions do the following elements form? (b) Calcium (Z = 20)(a) Iodine (Z = 53)(c) Aluminum (Z = 13)Plan: Use Z (atomic number) to find the element Find relationship of element to the nearest noble gas Group I –IV elements lose electrons and assume the electron configuration of the noble gas of the "Period" just above Group V-VII elements gain electrons and assume the configuration of the noble gas of the same period

Predicting the Ion and Element Forms

Exs:

a. Iodine is a nonmetal in Group 7A(17) It gains 1 electron to have the same number of electrons as $_{54}Xe(I^{-})$, i.e., Iodine is in same row as Xe

b. Calcium is a metal in Group 2A(2)
 It loses 2 electrons to have the same number of electrons as ₁₈Ar (Ca²⁺),
 i.e, Ar is in row 3 while Ca is in row 4

c. Aluminum is a metal in Group 3A(13) It loses 3 electrons to have the same number of electrons as ₁₀Ne (AL³⁺), i.e., Ne is in row 2 while Al is in row 3

Predicting the Ion and Element Forms

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8A (18)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8A (18)
1 1 - - - Atomic number Metals (main-group) 1 1 2A -	
1 H 2A / Atomic number Metals (main-group) 1.008 (2) / Atomic number Metals (transition) 3 4 Atomic symbol Metals (inner transition) 3 4 Atomic symbol Metals (inner transition)	2
1.008 (2) / Be Atomic symbol Metals (transition) (13) (14) (15) (16) (1 3 4 0.010 Atomic symbol Metals (inner transition) 5 6 7 8 9	He
3 4 Atomic symbol Metalloids 5 6 7 8 5	7) 4.003
	10
2 Li Be 9.012 Atomic mass (amu) B C N O F	Ne
6.941 9.012 10.81 12.01 14.01 16.00 19	00 20.18
11 12 TRANSITION ELEMENTS 13 14 15 16 1	7 18
22.99 24.31 (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 26.98 28.09 30.97 32.07 35.07	45 39.95
	26
$\begin{bmatrix} 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 &$	
4 K Ca SC H V Cf Will Fe CO Ni Cu Zh Ga Ge AS Se B Ga Ge AS Ge Ge AS Se B Ga Ge Ge AS Ge Ge Ge Ge Ge Ge Ge Ge	
	50 05.00
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 5	3 54
5 Rb Sr Y Zr Nb Mo Ic Ru Rh Pd Ag Cd In Sn Sb le	Xe
85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 120	.9 131.3
55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 8	5 86
6 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po A	t Rn
132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 (209) (21	0) (222)
87 88 89 104 105 106 107 108 109 110 111 112 113 114 115 116	110
7 Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Rg Cn	118
(223) (226) (227) (263) (262) (266) (267) (277) (268) (281) (272) (285) (284) (289) (288) (292)	118

Chemical Bonding – Ionic Compounds

- Coulomb's Law: The energy of attraction (or repulsion) between two particles is directly proportional to the product of the charges and inversely proportional to the distance between them
- Cations positively charged atoms usually metals from groups I & II)
- Anions negatively charged nonmetals, usually halogens, oxygen, sulfur, nitrogen from groups V, VI, VII)

Chemical Bonding – Compounds
 The Transfer of electrons between cations and anions forms

Ionic compounds

The Sharing of electrons between atoms forms

Covalent compounds

The formation of Ionic and Covalent compounds generate Chemical Bonds, representing the energy of the forces that hold the atoms of elements together in a compound

Chemical Bonding – Ionic Compounds

The strength of the Ionic bond depends on the extent of the net strength of the attractions and repulsions of the ion charges

Ionic Compounds are neutral, continuous arrays of oppositely charged cations & anions, not a collection of individual molecules, e.g., Na⁺ & Cl⁻ ions, not NaCl molecules

Covalent Compounds

Covalent compounds are formed by the <u>sharing</u> of electrons, normally between <u>nonmetals</u>

Diatomic Covalent Compounds

- Hydrogen, as it exists in nature, is a diatomic molecule (H₂) in which the single electron from each atom is shared by the other atom forming a covalent bond at an electrostatically optimum distance
- Other examples of diatomic molecules with covalent bonds include:

Fetratomic and Octatomic molecules also exist and have covalent bonds:

 N_2 O_2 F_2 CI_2 Br_2 I_2

Covalent Compounds

- Polyatomic Covalent Compounds contain atoms of different elements (usually 2 non-metals) also form covalent compounds
- In Hydrogen Fluoride (HF) the single Hydrogen electron forms a covalent bond with the single valence electron of the Fluoride atom
 - Other examples:
 - H₂O, NH₃, CO₂, and all organic compounds
- When the maximum <u>attractive</u> force <u>matches</u> the maximum <u>repulsive</u> force between the two approaching atoms, the resulting potential energy of the system is at a <u>minimum</u>, resulting in a <u>stable</u> covalent bond

Covalent Bonds within Ions
Many Ionic compounds contain polyatomic ions
Polyatomic ions consist of two or more atoms bonded covalently, usually with a net negative charge

Ex. Calcium Carbonate - CaCO₃ An Ionic Compound containing: monatomic Ca⁺⁺ cation & polyatomic CO₃²⁻ anion

The Carbonate ion consists of a carbon atom covalently bonded to 3 oxygen atoms plus 2 additional electrons to give the net charge of 2-

Practice Problem

Sodium Oxide combines violently with water Which of the following gives the formula and the bonding for sodium oxide?

- a. NaO ionic compound
- b. NaO covalent compound
- c. Na₂O ionic compound
- d. Na₂O covalent compound
- e. Na₂O₂ ionic compound

Ans: c

Sodium is a metal; Oxygen is a nonmetal Metals & nonmetals usually form ionic compounds Each Sodium atom loses 1 electron to form a cation Each Oxygen atom gains two electrons to form anion

Practice Problem

Describe the type and nature of the bonding occurring in a sample of P_4O_6 ?

- a. metal & nonmetal forming ionic bond
- b. two nonmetals forming covalent bond
- c. two metals forming covalent bond
- d. nonmetal & metal forming covalent bond

Ans: b

P (Phosphorus) and O (Oxygen) are both nonmetals They will bond <u>covalently</u> to form P_4O_6

Nomenclature: Naming of Compounds Monatomic cations are named after the element, commonly with an "ium" ending: K⁺ potassium, Mg²⁺ magnesium, Cs⁺ cesium If the element can exist in more than one oxidation state (different ionic charges), the element name is followed by the ionic charge in parenthesis: Fe^{2+} iron (II), Fe^{3+} iron (III) Monatomic anions use the stem from the element name with the --ide suffix $Cl^{-} = chloride$

 $O^{2-} = oxide$

 N^{3-} = nitride

 S^{2-} = sulfide

Practice Problem

Name the following ionic compounds from their formulas.

(a) BaO (b) $Cr_2(SO_4)_3$

Ans: (a) Barium Oxide

(b) Chromium (III) Sulfate

Practice Problem

What is the formula of Magnesium Nitride, which is composed of Mg²⁺ and N³⁻ ions?

Ans:

 Mg_3N_2

Nomenclature Binary Molecular Compounds

- Formed by 2 nonmental or metalloid atoms bonded together
- The name of the compound has the elements in order of convention
- Name the 1st element using element name
- Name the 2nd element by writing the stem of the element with –ide suffix (as if an anion in ionic)
- Add Greek prefix for each element as needed to correspond to formula
 - H_2O = dihydrogen oxide (water, of course!)
 - N_2O = dinitrogen oxide (laughing gas)
 - P_2O_5 = diphosphorus pentoxide (no "a" in penta)

Examples of Binary Molecular Compounds

BF ₃ Boron Trifluoride	
IBr Iodine Monobromide	
SO ₂ Sulfur Dioxide	
SiCl ₄ Silicon Tetrachloride	

Greek Prefixes for Naming Compounds

Number	Prefix
1	mono-
1	di
2	ui-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	octa-
9	nona-
10	deca-

Practice ProblemGive the formula for each of the binary compounds(a) Carbon Disulfide(b) Nitrogen Tribromide(c) Dinitrogen Tetrafluoride

Ans: (a) CS_2 (b) NBr_3 (c) N_2F_4 Nomenclature - Polyatomic Oxoanions
 Polyatomic ion: 2 or more atoms bonded together forming an ion
 Oxoanions: polyatomic anions with a *nonmetal* bonded to <u>1 or more</u> Oxygen atoms

Oxoanions have the suffix –ite or –ate

- ate oxoanion with most oxygen
- ite oxoanion with fewer oxygen
- $NO_2^- = Nitrite SO_3^{2-} = Sulfite$
- $NO_3^- = Nitrate SO_4^{2-} = Sulfate$

Nomenclature - Polyatomic anoxions In cases where more than 2 forms exist, use hypo- and per-prefixes in addition to the -ate & -ite suffixes Ion with <u>most</u> O atoms has prefix per-, the nonmetal *root,* and suffix –ate ClO_4^- (Perchlorate) > Ion with one fewer O has nonmetal root & suffix –ate ClO_3^- (Chlorate) Find the second seco ClO_2^- (Chlorite) Ion with three fewer O has prefix hypo, nonmetal root, and suffix -ite ClO⁻ (Hypochlorite)

Common Polyatomic Ions

Formula	Name	Formula	Name
Cations NH_4^+ H_3O^+	ammonium hydronium	Cations NH4 ⁺ H4O ⁺	ammonium
Anions CH ₃ COO ⁻	acetate	Anions	nyuromum
(or $C_2H_3O_2^-$) CN ⁻ OH ⁻	cyanide hydroxide	CrO_4^{2-} $Cr_2O_7^{2-}$	chromate dichromate
ClO^{-} ClO_{2}^{-}	hypochlorite chlorite	$\frac{O_2}{PO_4^{3-}}$ HPO_4^{2-}	peroxide phosphate hydrogen
CIO_4^- NO_2^-	perchlorate nitrite	$H_2PO_4^-$	phosphate dihydrogen
NO_3^- MnO_4^- CO_3^{2-}	nitrate permanganate carbonate	SO_3^{2-}	phosphate sulfite
HCO ₃ -	hydrogen carbonate (or bicarbonate)	HSO_4^-	hydrogen sulfate (or bisulfate)

Practice ProblemName the Following Compounds Na_2SO_4 Na_2SO_3 Sodium SulfateSodium Sulfite

AgCN Silver Cyanide Cd(OH)₂ Cadmium Hydroxide

Ca(OCI)₂ Calcium Hypochlorite

KClO₄ Potassium Perchlorate

Practice Problem

The formula for Copper(II) Phosphate is:

a. CoPO₄
b. CuPO₄
c. Co₂(PO₄)₃
d. Cu₂(PO₄)₃
e. Cu₃(PO₄)₂

Ans: e

 Cu^{+2} (3x2⁺) = +6 PO₄⁻³ (2x3⁻) = -6

Main-Group Elements									Mai	n-Grou	p Elem	ents							
	(1 IA		Atomic number H Symbol													18 VIIIA		
	1	1 H 1.00794	2 IIA		1.00794 Atomic weight									13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 He 4.002602
	2	3 Li 6.941	4 Be 9.012182	_	Transition Metals									5 B 10.811	6 C 12.0107	7 N 14.0067	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
	3	11 Na 22.989770	12 Mg 24.3050	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 IB	12 IIB	13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.065	17 Cl 35.453	18 Ar 39.948
Period	4	19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.409	31 Ga 69.723	32 Ge 72.64	33 As 74.92160	34 Se 78.96	35 Br 79.904	36 Kr 83.798
	5	37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.293
	6	55 Cs 132.90545	56 Ba 137.327	57 La* 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 Tl 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
	7	87 Fr (223)	88 Ra (226)	89 Ac** (227)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Uun (281)	111 Uuu (272)	112 Uub (285)		114 Uuq (289)		116 Uuh (292)		
	Inner-Transition Metals																		
		Metal				58	59 D	60	61	62	63	64	65	66	67	68	69 Th	70	71
		Metalloi	id	*Lantha	anides	140.116	Pr 140.90765	144.24	(145)	5m 150.36	151.964	157.25	158.92534	162.500	H0 164.93032	Er 167.259	1 m 168.93421	173.04	LU 174.967
		Nonmet	al	**Act	inides	90 Th 232.0381	91 Pa 231.03588	92 U 238.02891	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Nomenclature - Acids and Oxoacids Acids are compounds that yield H⁺ ions in solution Oxoacid: acid containing hydrogen, oxygen and one other nonmetal element (central atom) Oxoacids names are related to names of oxoanions -ide (anion) = -ic (acid) -ate(anion) = -ic(acid)-ite (anion) = -ous (acid) $H_2SO_4 = Sulfuric Acid$ (Sulfate Anion) $H_2SO_3 = Sulfurous Acid$ (Sulfite Anion) = Hydrochloric Acid (Chloride Anion) HC HCIO = Hypochlorous Acid (Hypochorite Anion)(Perchlorate Anion) $HClO_4 = Perchloric Acid$

Oxoanions / Oxoacids

Some Oxoanions and Their Corresponding Oxoacids

Oxoanion		Oxoacid	
CO3 ²⁻	Carbonate ion	H ₂ CO ₃	Carbonic acid
NO_2^-	Nitrite ion	HNO_2	Nitrous acid
NO_3^{-}	Nitrate ion	HNO ₃	Nitric acid
PO_{4}^{3-}	Phosphate ion	H ₃ PO ₄	Phosphoric acid
SO_{3}^{2-}	Sulfite ion	H_2SO_3	Sulfurous acid
SO_4^{2-}	Sulfate ion	H_2SO_4	Sulfuric acid
ClO^{-}	Hypochlorite ion	HClO	Hypochlorous acid
ClO_2^-	Chlorite ion	HClO ₂	Chlorous acid
ClO_3^-	Chlorate ion	HClO ₃	Chloric acid
ClO_4^-	Perchlorate ion	HClO ₄	Perchloric acid

Nomenclature - Hydrates

- A hydrate is a compound that contains water molecules weakly bound in its crystals
- Hydrates are named from the anhydrous (dry) compound, followed by the word "hydrate" with a prefix to indicate the number of water molecules per formula unit of the compound

$CuSO_4 \bullet 5 H_2O$

Copper(II) Sulfate Pentahydrate