## Electronic Configuration

- The electrons are configured (distributed) into "orbitals," which represent energy levels
- Electrons are able to move from one orbital (energy level) to another by emission or absorption of a quantum of energy, in the form of a photon
- Knowledge of the electron configuration of different atoms is useful in understanding the structure of the periodic table of elements
- The concept is also useful for describing the chemical bonds that hold atoms together
- In bulk materials this same idea helps explain the peculiar properties of lasers and semiconductors


## Electron Configuration

- According to quantum mechanics each electron is described by 4 Quantum numbers
> Principal Quantum Number
> Angular Momentum Quantum Number
> Magnetic Quantum Number
> Spin Quantum Number
The first 3 quantum numbers define the wave function of the electron's atomic orbital, i.e., it size and general energy level
The fourth quantum number refers to the


## Spin Orientation

of the 2 electrons that occupy an atomic orbital

## Electronic Configuration

- Quantum Numbers and Atomic Orbitals
> The Principal Quantum Number ( $\mathbf{n}$ ) represents the "Shell Number" in which an electron "resides"
- It represents the relative size of the orbital
- Equivalent to periodic chart Period Number
- Defines the principal energy of the electron
- The smaller " $n$ " is, the smaller the orbital size
- The smaller " $n$ " is, the lower the electron energy
- n can have any positive value from

$$
1,2,3,4 \ldots \infty
$$

(Currently, $\mathrm{n}=7$ is the maximum known)

## Quantum Theory of The Atom

- Quantum Numbers and Atomic Orbitals (Con't)
> The Angular Momentum Quantum Number ( $l$ ) distinguishes "sub shells" within a given shell
- Each main "shell," designated by quantum number " $n$," is subdivided into:

$$
l=n-1 \text { "sub shells" }
$$

- ( $l$ ) can have any integer value from 0 to $\mathrm{n}-1$
- The different " $l$ " values correspond to the s, p, d, f designations used in the electronic configuration of the elements

| Letter | s | p | d | f |
| :---: | :---: | :---: | :---: | :---: |
| $l$ value | 0 | 1 | 2 | 3 |

# Quantum Theory of The Atom 

- Quantum Numbers and Atomic Orbitals (Con't)
> The Magnetic Quantum Number $\left(m_{l}\right)$ defines atomic orbitals within a given sub-shell
- Each value of the angular momentum number ( $l$ ) determines the number of atomic orbitals
- For a given value of " $l_{,}$" $\mathrm{m}_{l}$ can have any integer value from $-l$ to $+l$

$$
\mathrm{m}_{l}=-l \text { to }+l \quad(-2-10+1+2)
$$

- Each orbital has a different shape and orientation ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ) in space
- Each orbital within a given angular momentum number sub shell $(l)$ has the same energy


# Quantum Theory of The Atom 

- Quantum Numbers and Atomic Orbitals (Con't)
> The Spin Quantum Number $\left(\mathrm{m}_{\mathrm{s}}\right)$ refers to the two possible spin orientations of the electrons residing within a given atomic orbital
- Each atomic orbital can hold only two (2) electrons
- Each electron has a "spin" orientation value
- The spin values must oppose one another
- The possible values of $m_{s}$ spin values are:

$$
+1 / 2 \text { and }-1 / 2
$$

## Electronic Configuration

- Quantum Numbers and Atomic Orbitals (Con't)
> The Magnetic Quantum Number $\left(m_{l}\right)$ defines the atomic orbitals within a given sub-shell
- Each value of the angular momentum number ( $l$ ) determines the number of atomic orbitals
- For a given value of " $l_{l}$ " $m_{l}$ can have any integer value from $-l$ to $+l$

$$
\mathrm{m}_{l}=-l \text { to }+l
$$

- Each orbital has a different shape and orientation ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ) in space
- Each orbital within a given angular momentum number sub shell ( $l$ ) has the same energy


## Stern-Gerlach Experiment



A beam of H atoms can be separated into 2 beams of opposite electron spin in a magnetic field $m_{s}(-1 / 2)$ electrons have a slightly greater energy than $m_{s}(+1 / 2)$ electrons

## Representation of electron spin



External magnet


External magnet

A spinning charged particle aligns in a magnetic field depending on spin state

## Summary of Quantum Numbers

| Name | Symbol | Permitted <br> Values | Property |
| :--- | :---: | :---: | :---: |
| principal | $n$ | positive integers <br> $(1,2,3, \ldots)$ | orbital energy <br> (size) |

angular $\quad l \quad$ integers from orbital shape momentum

$$
0 \rightarrow n-1
$$

The $\boldsymbol{l}$ values
$0,1,2$, and 3
correspond to

$$
s_{1} \quad p_{r} \quad d \quad f
$$

orbitals, respectively


## Summary of Quantum Numbers

Name,
Symbol (Property)

Quantum Numbers

Principal, $n$
(size, energy)
Positive integer
(1, 2, 3, ...)

Angular
momentum, $l \quad l=0 \rightarrow n-1$
(shape)
0(s), 1(p),
2(d), 3(f)

Magnetic, $m_{l}$ (orientation)


## Electron Configuration

- An electron configuration of an atom is a particular distribution of electrons among available sub shells
> The configuration notation lists the subshell symbols ( $s$, , , d, f...) sequentially with a superscript indicating the number of electrons occupying that subshell
> Ex: lithium (Period ( n ) = 2, Atomic No 3) has
2 electrons in the " $1 \mathrm{~s}^{\prime \prime}$ sub shell
1 electron in the " $2 s^{\prime \prime}$ sub shell

$$
1 s^{2} 2 s^{1}
$$

Fluorine (Period (n) 2, Atomic No 9) has
2 electrons in the "1s" sub shell
2 electrons in the " $2 s^{\prime \prime}$ sub shell
5 electrons in the " $2 p^{\prime \prime}$ subshell

## Electron Configuration

- A unique set of the first 3 quantum numbers ( $\mathrm{n}, l_{,} \mathrm{m}_{l}$ ) defines an "Orbital"
- An orbital can contain a maximum of 2 electrons, each with a different "spin" (+1/2 or -1/2)
- An orbital diagram is notation used to show how the orbitals of a sub shell are occupied by electrons
- Each orbital is represented by a circle
> Each orbital can have a maximum of 2 electrons
> Each group of orbitals is labeled by its
Sub Shell Notation (s, p, d, f)
> Electrons are represented by arrows: $\operatorname{up}(\uparrow)$ for $m_{s}=+1 / 2$ and down $(\downarrow)$ for $m_{s}=-1 / 2$



## The Pauli Exclusion Principle

- The Pauli Exclusion Principle
> No two electrons in an atom can have the same four quantum numbers
- An orbital (unique combination of $\mathrm{n}, l, \mathrm{~m}_{l}$ ) can hold, at most, two electrons
> Two electrons in the same Orbital have opposite spins

$$
+1 / 2 \uparrow \quad-1 / 2 \downarrow
$$

## The Pauli Exclusion Principle

- The maximum number of electrons and their orbital diagrams are:

| Sub <br> Shell | No. <br> Orbitals | Values <br> $(-l$ to $+l)$ | Max No. <br> Electrons |
| :---: | :---: | :---: | :---: |
| $\mathrm{s}(l=0)$ | 1 | $(0)$ | 2 |
| $\mathrm{p}(l=1)$ | 3 | $(-1,0,+1)$ | 6 |
| $\mathrm{~d}(l=2)$ | 5 | $(-2,-1,0,+1,+2)$ | 10 |
| $\mathrm{f}(l=3)$ | $7(-3,-2,1,0,+1,+2,+3)$ | 14 |  |

## Practice Problem

If the $l$ quantum number is 3 , what are the possible values of $\mathrm{m}_{l}$ ?

Ans: $\mathrm{m}_{l}$ can have any integer value from $-l$ to $+l$

Since $l=3$

$$
\mathrm{m}_{l}=-3 \begin{array}{llllll}
-3 & -1 & 0 & +1 & +2 & +3
\end{array}
$$

## Practice Problem

State which of the following sets of quantum numbers would be possible and which impossible for an electron in an atom?
a. $\mathrm{n}=0, \quad l=0, \quad \mathrm{~m}_{l}=0, \quad \mathrm{~m}_{\mathrm{s}}=+1 / 2$
b. $\mathrm{n}=1, \quad l=0, \quad \mathrm{~m}_{l}=0, \quad \mathrm{~m}_{\mathrm{s}}=+1 / 2$
c. $\mathrm{n}=1, \quad l=0$,
$m_{1}=0$,
$m_{\mathrm{s}}=-1 / 2$
d. $\mathrm{n}=2, \quad l=1$,
$m_{1}=-2$,
$m_{\mathrm{s}}=+1 / 2$
e. $\mathrm{n}=2, \quad l=1$,
$m_{1}=-1$,
$m_{\mathrm{s}}=+1 / 2$

Ans: Possible b c e
Impossible a "n" must be positive 1, 2, 3...
Impossible $\quad \mathrm{d} \mathrm{m}_{l}$ can only be $-1 \quad 0+1$

## Configurations and the Periodic Table

## Condensed Electronic Configurations

|  | Full Electronic Configuration | Condensed Electronic Configuration |
| :---: | :---: | :---: |
| Helium | $1 \mathrm{~s}^{2}$ | [He] $2 \mathrm{e}^{-}$ |
| Neon | $1 s^{2} 2 s^{2} 2 p^{6}$ | [ Ne ] $10 \mathrm{e}^{-}$ |
| Argon | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ | [Ar] $18 \mathrm{e}^{-}$ |
| Krypton | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6}$ | [Kr] $36 \mathrm{e}^{-}$ |
| Xenon | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{25} 5 p^{6}$ | [Ze] $54 \mathrm{e}^{-}$ |
| Beryllium | $1 s^{2} 2 s^{2}$ | [He] 2s ${ }^{2}$ 4 e- |
| Magnesium | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$ | $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 12 \mathrm{e}-$ |
| Calcium | $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{23} p^{6} 4 s^{2}$ | [Ar] 4s ${ }^{2}$ 20 e- |
| Sodium Ion | $(\mathrm{Na}) 1 \mathrm{~s}^{2} 2 s^{2} 2 \mathrm{p}^{6} 3 s^{1} \rightarrow\left(\mathrm{Na}^{+}\right) 1 s^{2} 2 s^{2} 2 \mathrm{p}^{6}+1 \mathrm{e}^{-}$ | $[\mathrm{Ne}]+1 \mathrm{e}^{-}$ |

## Electron Configuration

- Quantum Number $n=1$ (Period 1)

$$
\begin{aligned}
& l \text { values }=0 \text { to }(n-1)=0 \text { to }(1-1)=0 \quad \therefore l \\
& =0(s \text { orbital })
\end{aligned}
$$

$\mathrm{m}_{l}$ values $=-l_{1}, \ldots, \ldots+l=0(1 \mathrm{~s}$ orbital) $m_{s}$ values $=-1 / 2 \&+1 / 2=\left(2 e^{-}\right.$per orbital)

1s orbital

$$
\begin{aligned}
& \mathrm{Z}=1 \text { Hydrogen } 1 \mathrm{~s}^{1} \\
& \mathrm{Z}=2 \text { Helium } 1 \mathrm{~s}^{2}
\end{aligned}
$$

Thus, for $\mathrm{n}=1$ there is one orbital (s) which can accommodate 2 elements - Hydrogen \& Helium

## Electron Configuration

- Quantum Number $n=2$ (Period 2)
$l$ values $=0$ to $(\mathrm{n}-1)=0$ to $(2-1)=0$ to $1 \quad \therefore l=0(\mathrm{~s}), 1(\mathrm{p})$
For $l=0(\mathrm{~s}) \quad \mathrm{m}_{l}=-l 0+l=0$ (one 2 s orbital, 2 electrons) $m_{\mathrm{s}}$ values $=-1 / 2 \quad \&+1 / 2$
For $l=1(\mathrm{p}) \quad \mathrm{m}_{l}=-1 \quad 0+1$ (three 2 p orbitals, 6 electrons) $m_{s}$ values $=-1 / 2 \quad \&+1 / 2$ in each orbital
es orbitals
$\mathrm{Z}=3$ Lithium $1 s^{2} 2 s^{1}$ or $[\mathrm{He}] 2 s^{1}$
$\mathrm{Z}=4$ Beryllium $1 s^{2} 2 s^{2}$ or [He] $2 s^{2}$
$\mathrm{Z}=5$ Boron $1 s^{2} 2 s^{2} 2 p^{1}$ or [He] $2 s^{2} 2 p^{1}$
$\mathrm{Z}=6$ Carbon $1 s^{2} 2 s^{2} 2 p^{2}$ or $[H e] 2 s^{2} 2 p^{2}$
$\mathrm{Z}=7$ Nitrogen $1 s^{2} 2 s^{2} 2 p^{3}$ or [He] $2 s^{2} 2 p^{3}$
$\mathrm{Z}=8$ Oxygen $1 s^{2} 2 s^{2} 2 p^{4}$ or [He] $2 s^{2} 2 p^{4}$
$\mathrm{Z}=9$ Fluorine $1 s^{2} 2 s^{2} 2 p^{5}$ or [He] $2 s^{2} 2 p^{5}$
$Z=10$ Neon $1 s^{2} 2 s^{2} 2 p^{6}$ or $[H e] 2 s^{2} 2 p^{6}$

ep orbitals



## Electron Configuration

- With sodium $(Z=11)$, the $3 \mathbf{s}$ sub shell begins to fill
$\mathrm{Z}=11$ Sodium $1 s^{2} 2 s^{2} 2 p^{63} s^{1}$ or $[\mathrm{Ne}] 3 s^{1}$
$\mathrm{Z}=12$ Magnesium $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$ or $[\mathrm{Ne}] 3 s^{2}$
Starting with $Z=13$, the $\underline{3 p}$ sub shell begins to fill
$\mathrm{Z}=13$ Aluminum $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 \mathrm{p}^{1}$ or $[\mathrm{Ne}] 3 s^{2} 3 \mathrm{p}^{1}$ $\downarrow$
$\mathrm{Z}=18$ Argon $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$ or $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$


## Electron Configuration

- Electrostatic Effects and Energy-Level Splitting
> The principal quantum number ( n ) defines the energy level of an atom
- The higher the " $n$ " value, the higher the energy level
- The unique values of the principal quantum numbers of multi-electron atoms ( $\mathrm{n}, l, \mathrm{~m}_{l}$ ) define a unique energy level for the orbital of a given electron
- The energy of a given orbital depends mostly on the value of the principal quantum number ( n ), i.e. its size, and to a lesser degree on the shape of the orbital represented by the various values of the magnetic quantum number $(l)$


## Electron Configuration

- The energy states of multi-electron atoms arise from 2 counteracting forces:
> Nucleus - Positive protons attract Negative electrons
> Electron - Negative electrons repulse each other
> Nuclear protons create a pull (attraction) on electrons
> Higher nuclear charge (Z) lowers orbital energy (stabilizes system) by increasing proton-electron attractions
- The energy required to remove the 1 electron from Hydrogen $(H), Z=1$, is much less than the energy to remove the 1 s electron from the $\mathrm{Li}^{2+}$ ion, $Z=3$


## Electron Configuration

- Effect of Nuclear Charge (Z) on Orbital Energy


Greater Nuclear Charge lowers orbital energy making it more difficult to remove the electron from orbit
The absolute value of the 1s orbital energy is related directly to $Z^{2}$
Energy required to remove 1 s electron from H

$$
1311 \mathrm{~kJ} / \mathrm{mol} \quad(\mathrm{Z}=+1 \text {, Least stable) }
$$

Energy required to remove is electron from He ${ }^{+}$

$$
5250 \mathrm{~kJ} / \mathrm{mol} \quad(\mathrm{Z}=+2)
$$

Energy required to remove 1s electron from $\mathrm{Li}^{-1}$
$11815 \mathrm{~kJ} / \mathrm{mol}(\mathrm{Z}=+3$, Most stable)

## Electron Configuration

- Shielding - Effect of Electron Repulsions on Orbital Energy
> Electrons feel repulsion from other electrons somewhat shielding (counteracting) the attraction of the nuclear protons
> Shielding (screening) lowers the full nuclear charge to an "Effective Nuclear Charge $\left(Z_{\text {eff }}\right)$
> The lower the Effective Nuclear Charge, the easier it is to remove an electron
- It takes less than half as much energy to remove an electron from Helium (He) ( $2373 \mathrm{~kJ} / \mathrm{mol}$ ) than from $\mathrm{He}^{+}(5250 \mathrm{~kJ} / \mathrm{mol})$ because the second electron in He repels the first electron and effectively shields the first electron from the full nuclear charge (lower $Z_{\text {eff }}$ )


## Electron Configuration

- Penetration: Effects of orbital shape
> The shape of an atomic orbital affects how close an electron moves closer to nucleus, i.e., the level of penetration
> Penetration and the resulting effects of shielding on a atomic orbital causes the energy level ( n ) to be split into sublevels of differing energy representing the various values of the magnetic quantum number ( $l$ )
> The lower the value of the magnetic quantum number $(l)$, the more its electrons penetrate

Order of Sublevel Energies

$$
\mathrm{s}(l=0)<\mathrm{p}(l=1)<\mathrm{d}(l=2)<\mathrm{f}(l=3)
$$

> Each of the orbitals for a given value of $l$ ( $\mathrm{m}_{l}=-10+1$ ) has the same energy

## Aufbau Principle

- Aufbau Principle - scheme used to reproduce the ground state electron configurations of atoms by following the "building up" order based on relative energy levels of quantum subshells
- The "building up" order corresponds for the most part to increasing energy of the subshells
- By filling orbitals of the lowest energy first, you usually get the lowest total energy ("ground state") of the atom


## Aufbau Principle

■ Listed below is the order in which all the possible sub-shells fill with electrons

Note the order does NOT follow a strict numerical subshell order
$1 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{p}, 3 \mathrm{~s}, ~ 3 \mathrm{p}, 4 \mathrm{~s}, 3 \mathrm{~d}, ~ 4 \mathrm{p}, 5 \mathrm{~s}, 4 \mathrm{~d}, ~ 5 \mathrm{p}, 6 \mathrm{~s}, 4 \mathrm{f}, 5 \mathrm{~d}, 6 \mathrm{p}, 7 \mathrm{~s}, 5 \mathrm{f}$

## You need not memorize this order

The next slide provides a pictorial providing an easier way of the viewing the 'build-up" order

## Aufbau Principle

- Every atom has an infinite number of possible electron configurations (electrons can be raised to any number of energy ( n ) levels)
> The configuration associated with the lowest energy level of the atom is called the


## "ground state"

> Other configurations correspond to

## "excited states"

> Tables on the next 3 slides list the groundstate configurations of atoms up to krypton

## Partial Orbital Diagrams



## Partial Orbital Diagrams

- Chromium (Cr) relative to Vanadium (V)
- The $\mathrm{Cr} 4 \mathrm{~s}^{1}$ subshell is filled before the 3 d subshell is completed
- An [Ar]3d44s² orbital configuration would be expected for ground state Cr, but the [Ar]3d ${ }^{5} 4 \mathrm{~s}^{1}$ orbital is lower in energy



## Partial Orbital Diagrams

- Copper (Cu) relative to Nickel (Ni)
- Copper would be expected to have a ground state configuration of $[\mathrm{Ar}] 3 \mathrm{~d}^{9} 4 \mathrm{~s}^{2}$
- The [Ar]3d ${ }^{104} s^{1}$ configuration is actually lower in energy



## Orbital Energy Levels in Multi-electron Systems



## Configurations and the Periodic Table

- Electrons that reside in the outermost shel/ of an atom - or in other words, those electrons outside the "noble gas core" - are called valence electrons
> These electrons are primarily involved in chemical reactions
> Elements within a given group have the same valence shell configuration
> This accounts for the similarity of the chemical properties among groups of elements

$$
\begin{array}{lll}
\mathrm{n}=2 & \mathrm{Li}-2 \mathrm{~s}^{1} & \mathrm{Be}-2 s^{2} \\
\mathrm{n}=3 & \mathrm{Na}-3 \mathrm{~s}^{1} & \mathrm{Mg}-3 s^{2} \\
\mathrm{n}=4 & \mathrm{~K}-4 \mathrm{~s}^{1} & \mathrm{Ca}-4 s^{2} \\
\mathrm{n}=5 & \mathrm{Rb}-5 s^{1} & \mathrm{Sr}-5 s^{2}
\end{array}
$$

## Configurations and the Periodic Table

> Noble gas core: an inner shell configuration resembling one of the noble gases ( $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}$, Kr, Xn)
> Pseudo-noble gas core: noble gas core + ( n 1)d ${ }^{10}$ electrons: $\quad \mathrm{Ex} \quad \mathrm{Sn} \rightarrow \mathrm{Sn}^{+4}$
$\mathrm{Sn}\left([\mathrm{Kr}] 5 s^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{2}\right) \rightarrow \mathrm{Sn}^{+4}\left([\mathrm{Kr}] 4 \mathrm{~d}^{10}+4 \mathrm{e}^{-}\right.$

## Configurations and the Periodic Table

- Configurations of Main Group Ions
> Noble gases have filled outer energy levels ( $n s^{2} n p^{6}$ ), have very high Ionization Energies (IEs), and positive (endothermic) Electron Affinities (EAs); thus do not readily form ions
> Elements in Groups 1A, 2A, 6A, 7A that readily form ions by gaining electrons ( $1 \mathrm{~A} \& 2 \mathrm{~A}$ ) or losing electrons (6A \& 7A) attain a filled outer level conforming to a Noble Gas configuration
> Such ions are said to be "Isoelectronic" with the nearest Noble gas configuration

$$
\begin{gathered}
\mathrm{Na}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}\right) \rightarrow \mathrm{Na}^{+}\left(1 s^{2} 2 s^{2} 2 p^{6}\right)+1 e^{-} \\
\text {Isoelectronic with }[\mathrm{Ne}]+1 e^{-}
\end{gathered}
$$

## Configurations and the Periodic Table

$\square$ The energy needed to remove the electrons from metal in groups 1A, 2A, 6A, 7A, is supplied during exothermic reactions with nonmetals

- Attempts to remove more than 1 electron from group 1A or 2 electrons from group 2A metals would mean removing core (not valence) electrons requiring significantly more energy than is available from a reaction with a nonmetal


## Configurations and the Periodic Table

- The larger metals from Groups 3A, 4A, and 5A form cations through a different process
- It would be energetically impossible for them to lose enough electrons to attain a noble gas configuration Ex: Tin (Sn), Z = 50 would have to lose 14 electrons (two 5p, ten 4d, two 5s) to be isoelectronic with Krypton: Z =36
- Instead, tin loses fewer electrons and still attains one or more stable pseudo-noble gas configurations

$$
\operatorname{Sn}\left([K r] 5 s^{2} 4 d^{10} 5 p^{2}\right) \rightarrow S n^{4+}\left([K r] 4 d^{10}\right)+4 e^{-}
$$

Stability comes from empty 5 s \& 5p sublevels and a filled inner 4 d sublevel $(\mathrm{n}-1) \mathrm{d}^{10}$ configuration Pseudo-Noble Gas Configuration

## Practice Problem

Which of the following electron configurations represents an excited state?
a. He: $1 s^{2}$
b. Ne: $1 s^{2} 2 s^{2} 2 p^{6}$
C. $\mathrm{Na}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
d. P: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2} 4 s^{1}$
e. $N: 1 s^{2} 2 s^{2} 2 p^{3}$

Ans: d
Ground state for Phosphorus is:

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}
$$

The $3 p$ subshell would continue to fill before the 4 s subshell would start to fill

## Practice Problem

What is the electron configuration for the valence electrons of Technetium ( $\mathrm{Tc}, \mathrm{Z}=43$ )?
a. $4 d^{5} 5 s^{2}$
b. $5 s^{2} 5 d^{4}$
C. $4 s^{2} 4 d^{4}$
d. $4 d^{6} 5 s^{2}$
e. $3 d^{4} 4 s^{2}$

Ans: a
$4 d^{5} 5 s^{2} \quad 5+2=7$ valence electrons
Technetium (atomic no. $=43=43$ total electrons)

## Practice Problem

What is the electron configuration for the valence electrons of Polonium ( $\mathrm{Po}, \mathrm{Z}=84$ )?
a. $6 s^{2} 6 p^{2}$
b. $6 s^{2} 5 d^{10} 6 p^{4}$
c. $6 s^{2} 5 d^{10} 6 p^{6}$
d. $6 s^{2} 6 p^{4}$
e. $7 s^{2} 6 p^{4}$

Ans: b
$6 s^{2} 5 d^{10} 6 p^{4} \quad 2+10+4=16$ valence electrons
Polonium (atomic no. $84=84$ total electrons)

## Configurations and the Periodic Table

- The following slide illustrates how the periodic table provides a sound way to remember the Aufbau sequence
> In many cases you need only the configuration of the outer electrons
> You can determine this from their position on the periodic table
> The total number of valence electrons for an atom equals its group (vertical column) number


## Configurations and the Periodic Table

Main block = s + p blocks
s block $1 s$
p block

f block *
Inner Transition
Elements
**


## Orbital Diagrams

- Consider carbon $(Z=6)$ with the ground state configuration $1 s^{2} 2 s^{2} 2 p^{2}$
$>$ Three possible arrangements are given in the following orbital diagrams.

> Diagram 1:
> Diagram 2:
> Diagram 3:

> Each state has a different energy and different magnetic characteristics

## Orbital Diagrams

- Hund's rule states that the lowest energy arrangement (the "ground state") of electrons in a sub-shell is obtained by putting electrons into separate orbitals of the sub shell with the same spin before pairing electrons
> Looking at carbon again, we see that the ground state configuration corresponds to diagram 1 when following Hund's rule

$>$ Note: The $2 e^{-}$in the $2 p$ orbitals are shown as "up" arrows representing the $+1 / 2$ spin state, which has lower energy the $-1 / 2$ spine state


## Orbital Diagrams

- To apply Hund's rule to Oxygen, whose ground state configuration is $1 s^{2} 2 s^{2} 2 p^{4}$, place the first seven electrons as follows

$>$ The last electron is paired with one of the $2 p$ electrons to give a doubly occupied orbital, i.e., $a+1 / 2$ spin state and $a-1 / 2$ spin state



## Summary

- Pauli Exclusion principle: no 2 e-s in an atom can have the same four quantum numbers
- Aufbau Principle: obtain electron configurations of the ground state of atoms by successively filling subshells with electrons in a specific order
- Hunds Rule: the lowest energy arrangement of electrons in a subshell is obtained by putting electrons into separate orbitals of the subshell with the same spin before paring them

Recall: $+1 / 2$ spin has lower energy then $-1 / 2$ spin

## Periodic Properties

- Two factors determine the size of an atom
> One factor is the principal quantum number, $\mathbf{n}$. The larger " $n$ " is, the larger the size of the orbital
> The other factor is the effective nuclear charge (slide 28), which is the positive charge an electron experiences from the nucleus minus any "shielding effects" from intervening electrons
- The Periodic Law states that:

When the elements are arranged by atomic number, their physical and chemical properties vary periodically - across the periodic chart row

# Periodic Properties - Atomic Size 

- Atomic Size, Ionization Energy, Electron Affinity
$>$ Atomic radius
- Within each Period (across horizontal row), the atomic radius tends to decrease with increasing atomic number (nuclear charge more dominant than electron repulsion)
- Within each Group (down a vertical column), the atomic radius tends to increase with increasing period number (electron repulsion dominates nuclear charge increase)


## Periodic Properties - Atomic Size

- Representation of atomic radii (covalent radii) of the main-group elements (neutral atoms)

|  | IA | IIA | IIIA | IVA | VA | VIA | VIIA | VIIIA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Period 1 | $\sigma$ |  |  |  |  |  |  | $\sigma^{\text {He }}$ |
| Period 2 |  | $\bigcirc$ | $\sigma^{B}$ | $\sigma^{c}$ | $\delta^{N}$ | $\delta^{\prime}$ | $\delta^{\mathbf{F}}$ | $\delta^{\mathrm{Ne}}$ |
| Period 3 |  |  | (A1) | Si | P | S | C1 | Ar) |
| Period 4 |  |  |  |  |  |  | Br | Kr |
| Period 5 |  |  |  |  |  |  |  | Xe |
| Period 6 |  |  |  |  |  |  |  |  |

## Periodic Properties - Atomic Size

- Ionic Size increase down a group
> Number of energy levels increases
- Ionic Size becomes more complicated across a period
> Decreases among cations
> Increase dramatically with first anion
> Decreases within anions



## Periodic Properties - Atomic Size

■ Ionic Size and Atomic Size
> Cations are smaller than their parent atoms

- Electrons are removed from the outer level
- Resulting decrease in electron repulsions allows nuclear charge to pull remaining electrons closer
> Anions are larger than their parent atoms
- Electrons added to outer level
- Resulting in increased electron repulsion allowing them to occupy more space


## Periodic Properties - Ionization Energy

- Ionization energy
- The first ionization energy of an atom is the minimal energy needed to remove the highest energy (outermost) electron from the neutral atom
- For a Lithium atom, the first ionization energy is illustrated by:
$\mathrm{Li}\left(1 \mathrm{~s}^{2} 2 \mathrm{~s}^{1}\right) \rightarrow \mathrm{Li}^{+}\left(1 \mathrm{~s}^{2}\right)+\mathrm{e}^{-} \quad \mathrm{IE}=520 \mathrm{~kJ} / \mathrm{mol}$
Endothermic (requires energy input)


## Periodic Properties - Ionization Energy

 > Ionization energy (IE)> There is a general trend that ionization energies increase with atomic number within a given period
> This follows the trend in size, as it is more difficult to remove an electron that is closer to the nucleus
> For the same reason, we find that ionization energies, again following the trend in size, decrease descending down a column of elements

## Ionization Energy vs Atomic Number



## Periodic Properties - Ionization Energy

Successive Ionization Energies of the First Ten Elements (kJ/mol)*

| Element | First | Second | Third | Fourth | Fifth | Sixth | Seventh |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| H | 1312 |  |  |  |  |  |  |
| He | 2372 | 5250 |  |  |  |  |  |
| Li | 520 | 7298 | 11,815 |  |  |  |  |
| Be | 899 | 1757 | 14,848 | 21,006 |  |  |  |
| B | 801 | 2427 | 3660 | 25,025 | 32,826 |  |  |
| C | 1086 | 2353 | 4620 | 6222 | 37,829 | 47,276 |  |
| N | 1402 | 2857 | 4578 | 7475 | 9445 | 53,265 | 64,358 |
| O | 1314 | 3388 | 5300 | 7469 | 10,989 | 13,326 | 71,333 |
| F | 1681 | 3374 | 6020 | 8407 | 11,022 | 15,164 | 17,867 |
| Ne | 2081 | 3952 | 6122 | 9370 | 12,177 | 15,238 | 19,998 |

## Ionization Energies to the "Right" of the a vertical line correspond to removal of electrons from the "Core" of the atom

## Periodic Properties - Ionization Energy

> Ionization energy (IE)

- The electrons of an atom can be removed successively
> The energies required at each step are known as the first ionization energy, the second ionization energy, and so forth
> Successive Ionization Energies increase because each electron is pulled away from an ion with a progressively higher positive charge, i.e., a more effective nuclear charge


## Exceptions to Ionization Energy Trends

- A IIIA element , such as Boron ( $2 s^{2} 2 p^{1}$ ), has a smaller ionization energy (IE) than the preceding IIA element Beryllium ( $2 s^{2}$ ) because one np electron is more easily removed than the second ns electron
- A VIA element, such as oxygen $\left(2 s^{2} 2 p^{4}\right)$, has smaller ionization Energy than the preceding VA element nitrogen $\left(2 s^{2} 2 p^{3}\right)$. As a result of repulsion it is easier to remove an electron from the doubly,occupied $2 p$ orbital of the VI element that from a singly occupied $p$ orbital of the preceding VA element



## Periodic Properties - Electron Affinity

> Electron Affinity (EA): the energy change for the process of adding an electron to a neutral atom in the gaseous state to form a negative ion, i.e., an Anion

- $1^{\text {st }}$ Electron Affinity - Formation of 1 mole of monovalent ( $1^{-}$) gaseous ions

$$
\text { Atoms }(\mathrm{g})+\mathrm{e}^{-} \rightarrow \operatorname{ion}^{-1}(\mathrm{~g}) \Delta \mathrm{E}=\mathrm{EA}_{1}
$$

- For the formation of the Chloride ion $\left(\mathrm{Cl}^{-}\right)$from the Chlorine atom, the first electron affinity is illustrated by:
$\mathrm{Cl}\left([\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{5}\right)+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}\left([\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}\right)$
Electron Affinity $=E A_{1}=-349 \mathrm{~kJ} / \mathrm{mol}$
Exothermic (releases energy)


## Periodic Properties - Electron Affinity

- Electron Affinity (EA)
- The more negative the electron affinity, the more stable the negative ion that is formed
- Broadly speaking, the general trend goes from lower left to upper right as electron affinities become more negative
- Highest electron affinities occur for halogens, F and Cl
- Negative values indicate that energy is released when the Anion forms
- Note: Electron Affinity is not the same as Electronegativity See (Chap 9) - bonded atom attracting shared electron pair


## Periodic Properties - Electron Affinity



## Periodic Properties - Atomic Size

- Atomic Size
> Atomic Size (neutral atoms \& ions) increases down a main group
> Atomic Size (neutral atoms \& ions) decreases across a Period
> Atomic Size remains relatively constant across a transition series
- Ionization Energy
> First Ionization Energy (remove outermost e-) is inversely related to atomic size
> 1st Ionization Energy decreases down a group
> 1st Ionization Energy increases across period
> Successive IEs show very large increases after 1st electron is removed
- Electron Affinity
> Similar patterns (with many exceptions) to ionization Energy (lower left to upper right)
> Highest electron affinities occur for halogens, F and Cl

