$$v = V_{m} \cos (\omega t + \theta_{v}),$$

$$i = I_{m} \cos (\omega t + \theta_{v} - \theta_{i}),$$

$$i = I_{m} \cos \omega t.$$

$$p = V_{m}I_{m} \cos (\omega t + \theta_{v} - \theta_{i}) \cos \omega t.$$

$$cos \alpha \cos \beta = \frac{1}{2} \cos (\alpha - \beta) + \frac{1}{2} \cos (\alpha + \beta)$$

$$p = \frac{V_{m}I_{m}}{2} \cos (\theta_{v} - \theta_{i}) + \frac{V_{m}I_{m}}{2} \cos (2\omega t + \theta_{v} - \theta_{i}).$$

$$cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$p = \frac{V_{m}I_{m}}{2} \cos (\theta_{v} - \theta_{i}) + \frac{V_{m}I_{m}}{2} \cos (\theta_{v} - \theta_{i}) \cos 2\omega t$$

$$- \frac{V_{m}I_{m}}{2} \sin (\theta_{v} - \theta_{i}) \sin 2\omega t.$$



### **Average and Reactive Power**



*P is called the average power, and Q is called the reactive power. Average* power is sometimes called **real power, because it describes the power in a** circuit that is transformed from electric to nonelectric energy.

$$P = \frac{1}{T} \int_{t_0}^{t_0+T} p \, dt, \qquad p = P + P \cos 2\omega t - Q \sin 2\omega t,$$



instantaneous real power can never be negative. in other words, power cannot be extracted from a purely resistive network. Rather, all the electric energy is dissipated in the form of thermal energy.

# **Power for Purely Inductive Circuits**





A measure of the power associated with purely inductive circuits is the reactive power *Q*. The name reactive power comes from the characterization of an inductor as a reactive element; its impedance is purely reactive. Note that average power *P* and reactive power *Q* carry the same dimension. To distinguish between average and reactive power, we use the units watt (*W*) for average power and var (volt-amp reactive, or VAR) for reactive power.

Figure 10.4 ▲ Instantaneous real power, average power, and reactive power for a purely inductive circuit.

#### **Power for Purely Capacitive Circuits**





Average power is zero, so there is no transformation of energy from electric to nonelectric form. In a purely capacitive circuit, the power is continually exchanged between the source driving the circuit and the electric field associated with the capacitive elements.

 $\theta_v - \theta_i = -90^\circ$ .

### **The Power Factor**

 $\theta_v - \theta_i$  plays a role in the computation of both average and reactive power and is referred to as the **power factor angle.** The cosine of this angle is called the **power factor, abbreviated pf, and the sine of this** angle is called the **reactive factor, abbreviated rf.** Thus

$$pf = \cos(\theta_v - \theta_i),$$

$$\mathbf{rf} = \sin\left(\theta_v - \theta_i\right)$$

To completely describe this angle, we use the descriptive phrases **lagging power factor and leading power factor. Lagging power factor implies that current lags voltage**— hence an inductive load. Leading power factor implies that current leads voltage—hence a capacitive load. Both the power factor and the reactive factor are convenient quantities to use in describing electrical loads.

#### The rms Value and Power Calculations



The rms value is also referred to as the **effective value of the sinusoidal** voltage (or current). The rms value has an interesting property: Given an equivalent resistive load, *R*, and an equivalent time period, *T*, the rms value of a sinusoidal source delivers the same energy to *R* as does a dc source of the same value

and, by similar manipulation,

$$Q = V_{\rm eff} I_{\rm eff} \sin \left(\theta_v - \theta_i\right).$$

$$P = \frac{V_m I_m}{2} \cos(\theta_v - \theta_i)$$
$$= \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta_v - \theta_i)$$
$$= V_{\text{eff}} I_{\text{eff}} \cos(\theta_v - \theta_i);$$



# The magnitude of complex power is referred to as **apparent power**

$$|S| = 2 \overline{P^2 + Q^2}.$$



## **Power Calculations**

We are now ready to develop additional equations that can be used to calculate real, reactive, and complex power

$$S = \frac{V_m I_m}{2} \cos (\theta_v - \theta_i) + j \frac{V_m I_m}{2} \sin (\theta_v - \theta_i)$$
$$= \frac{V_m I_m}{2} [\cos (\theta_v - \theta_i) + j \sin (\theta_v - \theta_i)]$$
$$= \frac{V_m I_m}{2} e^{j(\theta_v - \theta_i)} = \frac{1}{2} V_m I_m / (\theta_v - \theta_i).$$
$$S = V_{\text{eff}} I_{\text{eff}} / (\theta_v - \theta_i)$$
$$= V_{\text{eff}} I_{\text{eff}} e^{j(\theta_v - \theta_i)}$$
$$= V_{\text{eff}} e^{j\theta_v} I_{\text{eff}} e^{-j\theta_i}$$

$$= \mathbf{V}_{\text{eff}} \mathbf{I}_{\text{eff}}^*$$