- Ankara Üniversitesi BLM bölümü

BLM433 Sayısal Analiz Teknikleri

- LU decomposition method

Provides an efficient way to compute matrix inverse by separating the time consuming elimination of the Matrix [A] from manipulations of the right-hand side \{B\}.
Gauss elimination, in which the forward elimination comprises the bulk of the computational effort, can be implemented as an LU decomposition.

If

L- lower triangular matrix
U- upper triangular matrix
Then,
$[\mathrm{A}]\{\mathrm{X}\}=\{\mathrm{B}\}$ can be decomposed into two matrices [L] and [U] such that [L] $[\mathrm{U}]=[\mathrm{A}]$ $[\mathrm{L}][\mathrm{U}]\{\mathrm{X}\}=\{\mathrm{B}\}$
Similar to first phase of Gauss elimination, consider
$[\mathrm{U}]\{\mathrm{X}\}=\{\mathrm{D}\}$
$[\mathrm{L}]\{\mathrm{D}\}=\{\mathrm{B}\}$
$[L]\{D\}=\{B\}$ is used to generate an intermediate vector $\{\mathrm{D}\}$ by forward substitution
Then, $[\mathrm{U}]\{\mathrm{X}\}=\{\mathrm{D}\}$ is used to get $\{\mathrm{X}\}$ by back substitution

LU decomposition requires the same total FLOPS as for Gauss

 elimination.Saves computing time by separating time-consuming elimination step from the manipulations of the right hand side.
Provides efficient means to compute the matrix inverse

Vector and Matrix Norms

Norm is a real-valued function that

provides a measure of size or "length" of
vectors and matrices. Norms are useful in
studying the error behavior of
algorithms.

$$
\lfloor X\rfloor=\left\lfloor x_{1} x_{2} \cdots x_{n}\right\rfloor
$$

a Euclidean norm is computed as
$\|\mathrm{X}\|_{e}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$
For a matrix [A]
$\|\mathrm{A}\|_{e}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j}^{2}}$

Matrix Condition Number

$$
\operatorname{Cond}[A]=\|A\| \bullet\left\|A^{-1}\right\|
$$

$$
\frac{\|\Delta X\|}{\|X\|} \leq \operatorname{Cond}[A] \frac{\|\Delta A\|}{\|A\|}
$$

That is, the relative error of the norm of the computed solution can be as large as the relative error of the norm of the coefficients of [A] multiplied by the condition number.

For example, if the coefficients of [A] are known to tdigit precision (rounding errors $\sim 10-\mathrm{t}$) and Cond
$[\mathrm{A}]=10 \mathrm{c}$, the solution $[\mathrm{X}]$ matrix

Tridiagonal Systems

$$
\left[\begin{array}{llll}
f_{1} & g_{1} & & \\
e_{2} & f_{2} & g_{2} & \\
& e_{3} & f_{3} & g_{3} \\
& & e_{4} & f_{4}
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right\}=\left\{\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\right\}
$$

Gauss-Seidel method

Iterative or approximate methods provide an alternative to the elimination methods. The GaussSeidel method is the most commonly used iterative method.
The system $[\mathrm{A}]\{\mathrm{X}\}=\{\mathrm{B}\}$ is reshaped by solving the first equation for x 1 , the second equation for x 2 , and the third for $\mathrm{x} 3, \ldots$ and nth equation for xn . For conciseness, we will limit ourselves to a 3×3 set of equations.

$$
\begin{array}{r}
x_{1}=\frac{b_{1}-a_{12} x_{2}-a_{13} x_{3}}{a_{11}} \\
x_{2}=\frac{b_{2}-a_{21} x_{1}-a_{23} x_{3}}{a_{22}} \\
x_{1}=\frac{b_{3}-a_{31} x_{1}-a_{32} x_{2}}{a_{33}} \\
\left|\varepsilon_{a, i}\right|=\left|\frac{x_{i}^{j}-x_{i}^{j-1}}{x_{i}^{j}}\right| 100 \% \prec \varepsilon_{s}
\end{array}
$$

First Iteration

$$
\begin{array}{ll}
\left|\frac{\partial u}{\partial x}\right|+\left|\frac{\partial u}{\partial y}\right| \prec 1 & u\left(x_{1}, x_{2}\right)=\frac{b_{1}}{a_{11}}-\frac{a_{12}}{a_{11}} x_{2} \\
\left|\frac{\partial v}{\partial x}\right|+\left|\frac{\partial v}{\partial y}\right| \prec 1 & v\left(x_{1}, x_{2}\right)=\frac{b_{2}}{a_{22}}-\frac{a_{21}}{a_{22}} x_{1} \\
\frac{\partial u}{\partial x_{1}}=0 & \frac{\partial u}{\partial x_{2}}=-\frac{a_{12}}{a_{11}} \\
\frac{\partial v}{\partial x_{1}}=-\frac{a_{21}}{a_{22}} & \frac{\partial v}{\partial x_{2}}=0
\end{array}
$$

$$
\begin{aligned}
& \left|a_{11}\right| \succ\left|a_{12}\right| \\
& \left|a_{22}\right| \succ\left|a_{21}\right|
\end{aligned}
$$

For n equations :

$$
|a i i| \succ \sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i, j}\right|
$$

