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OPTIMIZATION
Root finding and optimization are related, both
involve guessing and searching for a point on a
function.

Fundamental difference is:

Root finding is searching for zeros of a function or
functions

Optimization is finding the minimum or the
maximum of a function of several variables.
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Where x is an n-dimensional
design vector, f(x) is the objective
function, di(x) are inequality
constraints, ei(x) are equality
constraints, and ai and bi are
constants
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Optimization problems can be classified on the basis of the
form of f(x):

If f(x) and the constraints are linear, we have linear
programming.

If f(x) is quadratic and the constraints are linear, we have
quadratic programming.

If f(x) is not linear or quadratic and/or the constraints are
nonlinear, we have nonlinear programming.

When equations(*) are included, we have a constrained
optimization problem; otherwise, it is unconstrained
optimization problem.
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One dimensional optimization

In multimodal functions, both local and global optima can
occur. In almost all cases, we are interested in finding the
absolute highest or lowest value of a function.
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By graphing to gain insight into the behavior of the
function.

Using randomly generated starting guesses and
picking the largest of the optima as global.
Perturbing the starting point to see if the routine

returns a better point or the same local minimum.



~—Golden section search -

A unimodal function has a single maximum or a
minimum in the a given interval. For a unimodal
function:

First pick two points that will bracket your extremum
[x], xu].

Pick an additional third point within this interval to
determine whether a maximum occurred.

Then pick a fourth point to determine whether the
maximum has occurred within the first three or last
three points

The key is making this approach efficient by choosing
intermediate points wisely thus minimizing the
function evaluations by replacing the old values with
new value
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Two results can occur:

If f(x1)>f(x2) then the domain of x to the left of x2 from xI to
x2, can be eliminated because it does not contain the
maximum. Then, x2 becomes the new xl for the next round.

If f(x2)>f(x1), then the domain of x to the right of x1 from xI to
x2, would have been eliminated. In this case, x1 becomes the
new xu for the next round.

New x1 is determined as before

J5-1
xl :xl +T(xu _xi)
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Newton method

A similar approach to Newton- Raphson method
can be used to find an optimum of f(x) by defining

a
new function g(x)=f‘(x). Thus because the same

optimal value x* satisfies both

ACH

f'(x*)=g(x*)=0 Al — f"(x )

We can use the following as a technique to the
extremum of f(x).






