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Functions to be integrated numerically are in two
forms:

A table of values. We are limited by the number of
points that are given.

A function. We can generate as many values of f(x)
as needed to attain acceptable accuracy.

Will focus on two techniques that are designed to
analyze functions:

Romberg integration
Gauss quadrature



ROMBERG integration

Is based on successive application of the trapezoidal rule to
attain efficient numerical integrals of functions.

Richardson’s Extrapolation/

Uses two estimates of an integral to compute a third and
more accurate approximation
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Gauss quadrature

implements a strategy of
positioning any two points on a
curve to define a straight line that
would balance the positive and
negative errors.

Hence the area evaluated under
this straight line provides an
improved estimate of the integral.
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Improper integrals can be evaluated by making a change
of variable that transforms the infinite range to one that
is finite,
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where —A is chosen as a sufficiently large
negative value so that the function has begun to
approach zero asymptotically at least as fast as 1/x2



