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Ordinary Differential Equations
Part 7

• Equations which are composed of an unknown 
function and its derivatives are called differential 
equations.

• Differential equations play a fundamental role in 
engineering because many physical phenomena are 
best formulated mathematically in terms of their rate 
of change.
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• When a function involves one dependent variable, the 
equation is called an ordinary differential equation 
(or ODE). A partial differential equation (or PDE) 
involves two or more independent variables.

• Differential equations are also classified as to their 
order.
– A first order equation includes a first derivative as its 

highest derivative.
– A second order equation includes a second derivative.

• Higher order equations can be reduced to a system of 
first order equations, by redefining a variable.
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ODEs and Engineering Practice
Figure PT7.1
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Figure PT7.2
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Figure PT7.5
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Runga-Kutta Methods
Chapter 25

• This chapter is devoted to solving ordinary 
differential equations of the form

Euler’s Method

),( yxf
dx

dy
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Figure 25.2
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• The first derivative provides a direct estimate of the 
slope at xi

where f(xi,yi) is the differential equation evaluated at 
xi and yi. This estimate can be substituted into the 
equation:

• A new value of y is predicted using the slope to 
extrapolate linearly over the step size h.
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Figure 25.3



Copyright © 2006 The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

by Lale Yurttas, Texas 
A&M University

Chapter 25 10

Error Analysis for Euler’s Method/

• Numerical solutions of ODEs involves two types of 
error:
– Truncation error

• Local truncation error

• Propagated truncation error

– The sum of the two is the total or global truncation error

– Round-off errors
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• The Taylor series provides a means of quantifying the 
error in Euler’s method. However;
– The Taylor series provides only an estimate of the local 

truncation error-that is, the error created during a single 
step of the method.

– In actual problems, the functions are more complicated 
than simple polynomials. Consequently, the derivatives 
needed to evaluate the Taylor series expansion would not 
always be easy to obtain.

• In conclusion,
– the error can be reduced by reducing the step size
– If the solution to the differential equation is linear, the 

method will provide error free predictions as for a straight 
line the 2nd derivative would be zero.
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Figure 25.4
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Improvements of Euler’s method

• A fundamental source of error in Euler’s 
method is that the derivative at the beginning 
of the interval is assumed to apply across the 
entire interval.

• Two simple modifications are available to 
circumvent this shortcoming:
– Heun’s Method

– The Midpoint (or Improved Polygon) Method
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Heun’s Method/

• One method to improve the estimate of the slope 
involves the determination of two derivatives for the 
interval:
– At the initial point

– At the end point

• The two derivatives are then averaged to obtain an 
improved estimate of the slope for the entire interval.

h
yxfyxf

yy

hyxfyy

iiii
ii

iiii

2

),(),(
:Corrector

),( :Predictor
0

11
1

0
1













Copyright © 2006 The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

by Lale Yurttas, Texas 
A&M University

Chapter 25 15

Figure 25.9
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Figure 25.10
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The Midpoint (or Improved Polygon) Method/

• Uses Euler’s method t predict a value of y at the 
midpoint of the interval:
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Figure 25.12
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Runge-Kutta Methods (RK)

• Runge-Kutta methods achieve the accuracy of a 
Taylor series approach without requiring the 
calculation of higher derivatives.
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Increment function

p’s and q’s are constants
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• k’s are recurrence functions. Because each k is a functional 
evaluation, this recurrence makes RK methods efficient for 
computer calculations.

• Various types of  RK methods can be devised by employing 
different number of terms in the increment function as 
specified by n.

• First order RK method with n=1 is in fact Euler’s method.

• Once n is chosen, values of a’s, p’s, and q’s are evaluated by 
setting general equation equal to terms in a Taylor series 
expansion.
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• Values of a1, a2, p1, and q11 are evaluated by setting 
the second order equation to Taylor series 
expansion to the second order term. Three 
equations to evaluate four unknowns constants are 
derived.
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three.
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• Because we can choose an infinite number of values 
for a2, there are an infinite number of second-order RK 
methods.

• Every version would yield exactly the same results if 
the solution to ODE were quadratic, linear, or a 
constant.

• However, they yield different results if the solution is 
more complicated (typically the case).

• Three of the most commonly used methods are:

– Huen Method with a Single Corrector (a2=1/2)
– The Midpoint Method (a2=1)
– Raltson’s Method (a2=2/3)
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Figure 25.14
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Systems of Equations

• Many practical problems in engineering and science 
require the solution of a system of simultaneous ordinary 
differential equations rather than a single equation:

• Solution requires that n initial conditions be known at the 
starting value of x.
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Adaptive Runge-Kutta Methods

• For an ODE with an 
abrupt changing 
solution, a constant step 
size can represent a 
serious limitation.

Figure 25.20
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Step-Size Control/

• The strategy is to increase the step size if the error is too small 
and decrease it if the error is too large. Press et al. (1992) have 
suggested the following criterion to accomplish this:

Dpresent= computed present accuracy

Dnew= desired accuracy

a= a constant power that is equal to 0.2 when step size 
increased and 0.25 when step size is decreased
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• Implementation of adaptive methods requires 
an estimate of the local truncation error at each 
step.

• The error estimate can then serve as a basis for 
either lengthening or decreasing step size.


