

Translation and proteins

Prof. Dr. İsmail AKYOL Prof. Dr. M. Ali YILDIZ Prof. Dr. M. Muhip ÖZKAN Ankara Üniversitesi

Outline of course

- The ribonucleotide sequence of messenger RNA (mRNA) reflects genetic information stored in the DNA of genes and corresponds to the amino acid sequences in proteins encoded by those genes.
- The process of translation decodes the information in mRNA, leading to the synthesis of polypeptide chains.
- Translation involves the interactions of mRNA, tRNA, ribosomes, and a variety of translation factors essential to the initiation, elongation, and termination of the polypeptide chain.
- Proteins achieve a three-dimensional conformation that arises from the primary amino acid sequences of the polypeptide chains making up each protein.
- The function of any protein is closely tied to its threedimensional structure, which can be disrupted by mutation.

Ribosome Structure

30*S*

50*S*

ribosomal subunits

70S

centrifuge

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Eukaryotic Ribosome

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Prokaryotic Ribosome

tRNA Structure

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Genetics Code

Genetics Code

	U	C	Α	G	
U	UUU Phe UUC Leu UUG Leu	UCU UCC UCA UCG		UGA Stop	U C A G
c	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAA GIn CAG	CGU CGC CGA CGG	U C A G
A	AUU AUC AUA Met	ACU ACC ACA ACG	AAU Asn AAA Lys	AGU } Ser AGA } Arg	U C A G
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC Asp GAA Glu	GGU GGC GGA GGG	U C A G

Amino Acids

Amino Acids

1- Alanine	Ala	Α	
2- Arginine	A <mark>r</mark> g	R	
3- Asparagine	Asn	N	CH
4- Aspartate	Asp	D	CH ₃ CH ₂ CH ₃
5- Cysteine	Cys	С	CH
6- Glutamate	Glu	E	С
7- Glutamine	Gln	Q	H ₂ N COOH
8- Glycine	Gly	G	isoleucine
9- Histidine	His	Н	
10- Isoleucine	lle	1	
11- Leucine	Leu	L	

Amino Acids					
12- Lysine	Lys	K			
13- Methionine	Met	М			
14- Phenylalanine	Phe	F			
15- Proline	Pro	Р			
16- Serine	Ser	S			
17- Threonine	Thr	Т			
18- Tryptophan	Trp	W			
19- Tyrosine	Tyr	Υ			
20- Valine	Val	V			

Peptide bond

Translation

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Sonlanma

2. GTP-bağımlı sonlanma faktörleri aktif duruma geçer; bileşenler ayrılır; polipeptit zinciri katlanarak proteini oluşturur

ŞEKİL 14.8 Translasyon işleminin sonlanmasının şematik gösterimi.

Polyribosome

ŞEKİL 14.9 Poliribozomların elektron mikroskop görüntüsü (a) tavşan retikülositlerinde hemoglobin mRNA'sının translasyona katılan kısmı (b) *Chiranamus thummi*'nin dev tükürük bezi hücrelerindeki poliribozomlar. Yeni sentezlenen polipeptit zincirinin ribozomlardan çıkışı (b)'de açıkça görülmektedir. mRNA üzerinde translasyon soldan (5') sağa doğru (3') ilerledikçe zincirin boyu uzamaktadır.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

BOX 14-5 TABLE 1 Antibiotics: Targets and Consequences

Antibiotic/Toxin	Target Cells	Molecular Target	Consequence	
Tetracycline	Prokaryotic cells	A site of 30S subunit	Inhibits aminoacyl-tRNA binding to A site	
Hygromycin B	Prokaryotic and eukaryotic cells	Near A site of 30S subunit	Prevents translocation of A-site tRNA to P site	
Paromycin	Prokaryotic cells	Adjacent to A-site codon–anti- codon interaction site in 30S subunit	Increases error rate during transla- tion by decreasing selectivity of codon-anticodon pairing	
Chloramphenicol	Prokaryotic cells	Peptidyl transferase center of 50S subunit	Blocks correct positioning of A site aminoacyl-tRNA for peptidyl transfer reaction	
Puromycin	Prokaryotic and eukaryotic cells	Peptidyl transferase center of large ribosomal subunit	Chain terminator; mimics 3 ' end of aminoacyl-tRNA in A site and acts as acceptor for nascent polypeptide chain	
Erythromycin	Prokaryotic cells	Peptide exit tunnel of 50S subunit	Blocks exit of growing polypeptide chain from the ribosome; arrests translation	
Fusidic acid	Prokaryotic cells	EF-G	Prevents release of EF-G-GDP from the ribosome	
Thiostrepton	Prokaryotic cells	Factor-binding center of 50S subunit	Interferes with the association of IF2 and EF-G with factor-binding center	
Kirromycin		EF-Tu	Prevents conformational changes associated with GTP hydrolysis and therefore EF-Tu release	
Ricin and α-Sarcin (protein toxins)	Prokaryotic and eukaryotic the cells	Chemically modifies RNA in factor-binding center of large ribosomal subunit	Prevents activation of translation factor GTPases	
Diptheria toxin	Eukaryotic cells	Chemically modifies EF-Tu	Inhibits EF-Tu function	
Cycloheximide	Eukaryotic cells	Peptidyl transferase center of 60S subunit	Inhibits peptidyl transferase activit	

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.