

Gene mutation, DNA repair and transposition

Prof. Dr. İsmail AKYOL Prof. Dr. M. Ali YILDIZ Prof. Dr. M. Muhip ÖZKAN Ankara Üniversitesi

Outline of course

- Mutations comprise any change in the nucleotide sequence of an organism's genome.
- Mutations comprise any change in the nucleotide sequence of an organism's genome.
- Mutations are a source of genetic variation and provide the raw material for natural selection.
- Mutations have a wide range of effects on organisms depending on the type of base-pair alteration, the location of the mutation within the chromosome, and the function of the affected gene product.
- Mutations can occur spontaneously as a result of natural biological and chemical processes, or they can be induced by external factors, such as chemicals or radiation.

Outline of course

- Single-gene mutations cause a wide variety of human diseases.
- Organisms rely on a number of DNA repair mechanisms to counteract mutations.
- Mutations in genes whose products control DNA repair lead to genome hypermutability, human DNA repair diseases, and cancers.
- Transposable elements may move into and out of chromosomes, causing chromosome breaks and inducing mutations both within coding regions and in generegulatory regions.

Type of Mutations

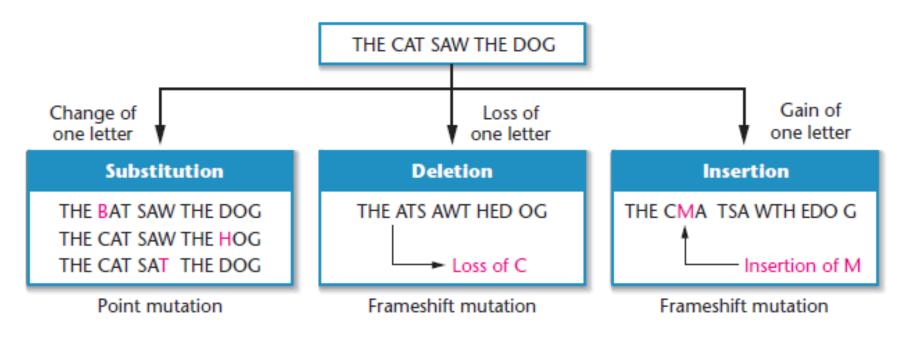


FIGURE 15.1 Analogy showing the effects of substitution, deletion, and insertion of one letter in a sentence composed of three-letter words to demonstrate point and frameshift mutations.

Mutations Occur Spontaneously and Randomly

TABLE 15.2 Spontaneous Mutation Rates at Various Loci in Different Organisms

Organism	Character	Locus	Rate*
Bacteriophage T2	Lysis inhibition	$r \rightarrow r^+$	$1 imes 10^{-8}$
	Host range	$h^+ \rightarrow h$	$4 imes 10^{-9}$
Escherichia coli	Lactose fermentation	$lac^- \rightarrow lac^+$	$2 imes 10^{-7}$
	Streptomycin sensitivity	$str-d \rightarrow str-s$	$1 imes 10^{-8}$
Zea mays	Shrunken seeds	$sh^+ \rightarrow sh^-$	1×10^{-6}
	Purple	$pr^+ \rightarrow pr^-$	1×10^{-5}
Drosophila melanogaster	Yellow body	$y^+ \rightarrow y$	$1.2 imes 10^{-6}$
	White eye	$w^+ \rightarrow w$	$4 imes 10^{-5}$
Mus musculus	Piebald coat	$g^+ \rightarrow g$	$3 imes 10^{-5}$
	Brown coat	$b^+ \rightarrow b$	$8.5 imes 10^{-4}$

^{*} Rates are expressed per gene replication (T2), per cell division (Escherichia coli), or per gamete per generation (Zea mays, Drosophila melanogaster, and Mus musculus).

Depurination and Deamination

FIGURE 15.4 Deamination of cytosine and adenine, leading to new base pairing and mutation. Cytosine is converted to uracil, which base-pairs with adenine. Adenine is converted to hypoxanthine, which base-pairs with cytosine.

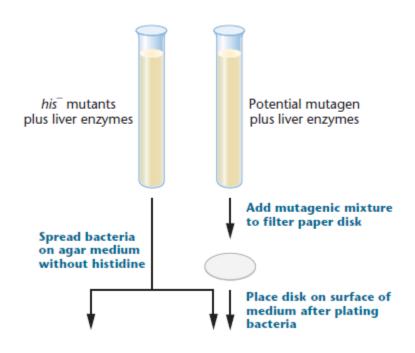

Single-Gene Mutations Cause a Wide Range of Human Diseases

TABLE 15.3 Examples of Human Disorders Caused by Single-Gene Mutations

Type of Mutation	Disorder	Molecular Change
Missense	Achondroplasia	Glycine to arginine at position 380 of FGFR3 gene
Nonsense	Marfan syndrome	Tyrosine to STOP codon at position 2113 of fibrillin-1 gene
Insertion	Familial	Various short insertions throughout the LDLR gene
	hypercholesterolemia	
Deletion	Cystic fibrosis	Three-base-pair deletion of phenylalanine codon at position 508 of CFTR gene
Trinucleotide repeat expansions	Huntington disease	>40 repeats of (CAG) sequence in coding region of Huntingtin gene

The Ames Test Is Used to Assess the Mutagenicity of Compounds

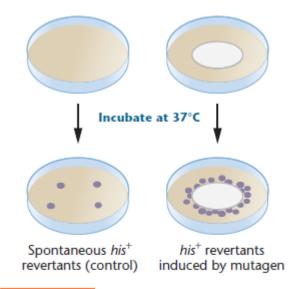


FIGURE 15.17 The Ames test, which screens compounds for potential mutagenicity. The high number of his⁺ revertant colonies on the right side of the figure confirms that the substance being tested was indeed mutagenic.