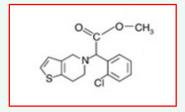
GENETIC FACTORS IN EFFICIENT DRUG USE

The Importance of Genetic Differences Among Individuals in Drug Use


Prof. Dr. H. Sinan SÜZEN

Pharmaceutical Toxicology Department

WHY is there a difference in EFFICACY between individuals in drug treatment?

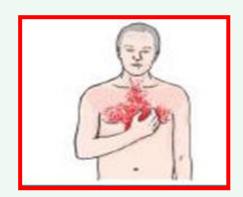
WHY is there a differences in SIDE EFFECTS between individuals who take the same medicine?

PLAVIX® TABLET 75 mg Clopidogrel

WHY is there a difference in EFFICACY between individuals in drug treatment

Summary of Product Characteristic

4.1. Therapeutic indications


Prevention of atherothrombotic events:

- Adult patients: Previous Myocardial Infarction, Previous Stroke or Peripheral Arterial Disease
- Adult patients: Acute Coronary Syndrome
- Prevention of atherothrombotic and thromboembolic events in atrial fibrillation

An increased risk of major adverse cardiovascular development (MI, stent thrombosis) in individuals with the *CYP2C19* * 2 allele.

1. Name of the medicinal product

Plavix 300 mg film-coated tablets

2. Qualitative and quantitative composition

Plavix 75 mg film-coated tablets

Each film-coated tablet contains 75 mg of clopidogrel (as hydrogen sulphate).

4. Clinical particulars

4.1 Therapeutic indications

Secondary prevention of atherothrombotic events

Clopidogrel is indicated in:

- Adult patients suffering from myocardial infarction (from a few days until less than 35 days), ischaemic stroke (from 7 days until less than 6 months) or established peripheral arterial disease.
- Adult patients suffering from acute coronary syndrome:

Prevention of atherothrombotic and thromboembolic events in atrial fibrillation

4.4 Special warnings and precautions for use

Cytochrome P450 2C19 (CYP2C19)

Pharmacogenetics: In patients who are poor CYP2C19 metabolisers, clopidogrel at recommended doses forms less of the active metabolite of clopidogrel and has a smaller effect on platelet function. Tests are available to identify a patient's CYP2C19 genotype.

The effectiveness of drugs used in some diseases

Therapeutic area	Efficay rate (%)
Analgesics	80
(COX-2 inhibitors)	
Depression	62
(SSRIs)	
Cardiac arrhythmia	60
Schizophrenia	60
Alzheimer	30
Oncology	25

WHY is there a differences in SIDE EFFECTS between individuals who take the same medicine?

Irinotecan

Approximately 35% of patients receiving irinotecan experience ADRs such as severe diarrhea and neutropenia.

1. Name of the medicinal product CAMPTO 20 mg/ml concentrate for solution for infusion

Irinotecan is indicated for the treatment of patients with advanced colorectal cancer

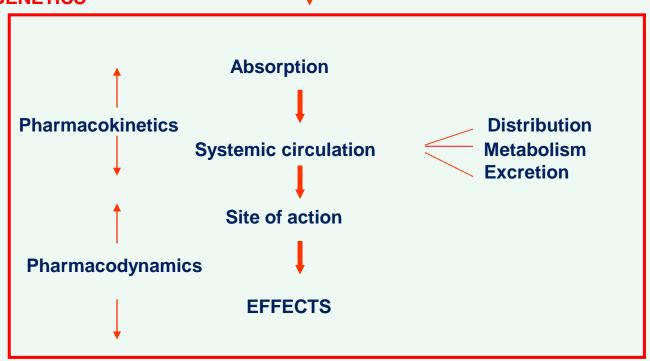
Patients with Reduced UGT1A1 Activity:

Uridine diphosphate-glucuronosyl transferase 1A1 (UGT1A1) is involved in the metabolic deactivation of SN-38, the active metabolite of irinotecan to inactive SN-38 glucuronide (SN-38G). The UGT1A1 gene is highly polymorphic, resulting in variable metabolic capacities among individuals.

Patients known to be homozygous for *UGT1A1*28* should be administered the normally indicated irinotecan starting dose.

In the USA, adverse drug reactions are 6.7% in hospital-treated patients, and about 100,000 of these have caused death (Lazarou et al.; JAMA, 1998).

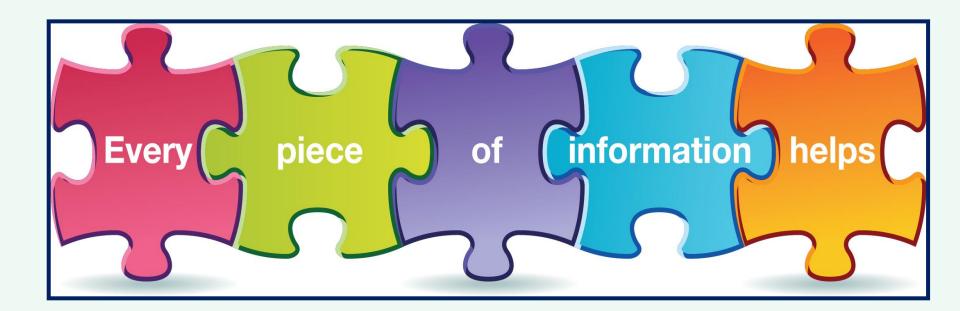
It is estimated that adverse drug reactions in the USA result in spending \$ 100 billion.


Biological Factors

Age
Gender
Disease
Pregnancy
GENETICS

Pharmaceutical

Drug dose
Frequeny of administration
Pharmaceutic formulation
Routes of administration



Culturel factors

Patient's attitude Patient involvement

Environmental factor

Drugs
Foods
Tobacco smoking
Alcohol
Environmental pollutants
Climate

Biological factors

Age, Gender, Race Pregnancy, Body size, Renal/hepatic function, Existing diseases, Medication compliance, Gastric pH, etc.

Drug-related factors

Drug structure and conformation,
Dosage scheme,
Half-life time,
Bioavailability,
Administration route,
Therp. ratio.

Environmental fac.

Diet / Nutrients, Smoking/alcohol consumption/ coffee intake, Co-delivered drugs and drug interactions.

GENETIC FACTORS

Genetic variations in

DRUG

related pathways

PHARMACOGENETICS: Pharmacogenomics investigate the genetic basis of inter-individual differences in drug responses, and adverse events.

PHARMACOGENOMICS: The area that investigates the genome function on the activity of drugs.

Pharmacogenetic objectives:

- To maximize drug effectiveness,
- To minimize the toxicity that may occur,
- Drug selection according to the genetic structure of the person,
- Dose selection according to the genetic structure of the person.

Absorbtion
Distribution
Metabolism
Excretion

Drug targets Disease related pathways

Pharmacokinetics + Pharmacodynamic

Drug Metabolised Enzymes Drug transporters

Receptors
Ion channels
Lipoproteins
Coagulation factors

Pharmaco- Toxicogenetic marker	DRUG	Test Purpose	Pharmaco- Toxicogenetic marker	DRUG	Test purpose
Test- MANDATORY EGFR Express. HER2/NEU over express. CCR-5-tropic HIV-1 Philadelphia Chrpositive	Cetuximab Trastuzumab Maraviroc Dasatinib	Efficacy Efficacy Efficacy	Only-INFORMATIVE c-KIT expression CYP2C19 polymorp. CYP2C9 poliymorp. CYP2D6 polymorp. DPD deficiency	Imatinib Voriconazole Celecoxib Atomoxetine, tamoxifen, voriconazole Capecitabine, fluorouracil	Eff & Safety Eff & Safety
Test- RECOMMEND HLA-B*1502 HLA-B*5701 CYP2C9 VKORC1 Protein C defciency TPMT polymorp. UGT1A1 polymorrp. G6PD deficiency Üre cycle disorder	Carbamazepine Abacavir Warfarin Warfarin Warfarin Azathioprine, mercaptopurine, thioguanine Irinotecan Rasburicase Valproic acid	Safety Safety Safety Safety Safety Safety Safety Safety Safety Safety	EGFR ekspresyon G6PD deficiency NAT polymorp Philadelphia chromosome negative PML/RAR gene expression	Erlotinib Rasburicase, primaquine Isoniazid, rifampin Busulfan Tretinoin	Safety Safety Efficacy Safety

Drugs that have contraindication as a pharmacogenetic (FG) biomarker in their use

Drug	Group	Gene	FG Inform.
Abacavir	Infection	HLA-B	HLA-B*5701 carriers
Capecitebine	Oncology	DPYD	DPD deficiency
Fluorouracil	Dermatology	DPYD	DPD deficiency
Pegloticase	Rheumotogy	G6PD	G6PD deficiency
Pimozide	Psychiatry	CYP2D6	CYP2D6 slow metabolisors
Quinine sulfate	Infection	G6PD	G6PD deficiency
Rasbucirase	Oncology	G6PD	G6PD deficiency
Thioridazine	Psychiatry	CYP2D6	CYP2D6 slow metabolisors