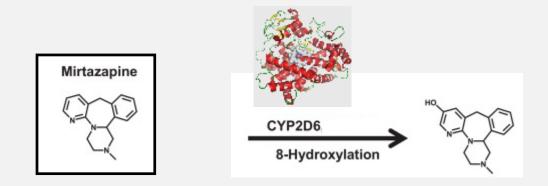
COURSE: GENETIC FACTORS IN EFFECTIVE

DRUG USE

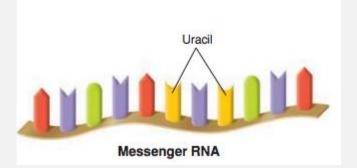
SUBJECT: Mechanism of Genetic Differences


Between Individuals in Drug Use

Professor Dr. H. Sinan SÜZEN

Pharmaceutical Toxicology Department

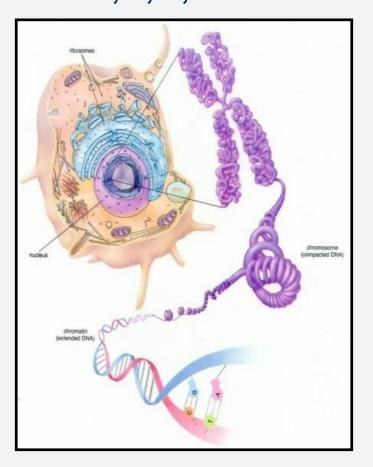
Absorption Distribution Metabolism Excretion	Drug targets Disease related pathways	
Pharmacokinetics	+ Pharmacodynamics	Drug response / Toxicity
Drug metabolising enzymes Drug transporters	Enzymes Receptors Ion channels Lipoproteins Coagulation factors	



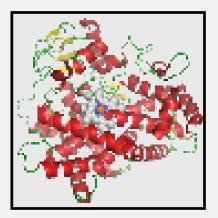
Person 1: CC CCA G GACG

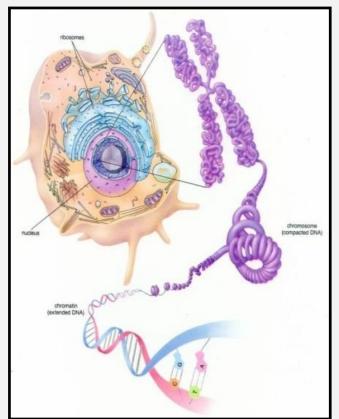
Person 2: CC CCA A GACG

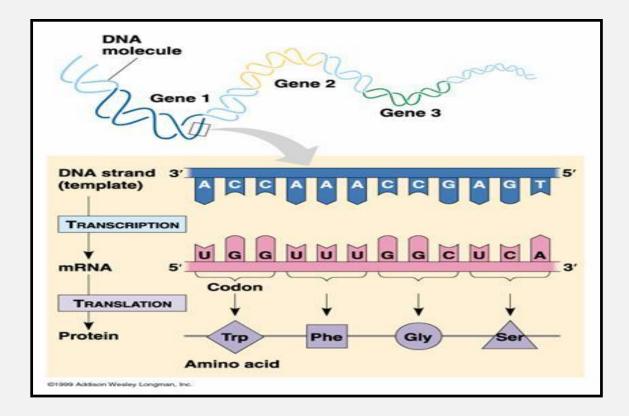
rs 3892097



DNA controls many functions in the cell. It does this by determining which enzymesproteins will be synthesized in the cell.


$DNA \rightarrow RNA \rightarrow Protein$

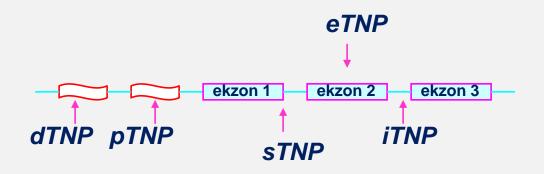

DNA → RNA → protein Transkripsiyon Translasyon			
DNA Synthesis of mRNA in the ucleus MUCLEUS MOVEMENT of mRNA into cytoplasm via DNA MENA into cytoplasm via DNA MENA Ribosome Diverses Diverses DNA MENA			


The genetic material is inside the nucleus in the cell. There are 23 pairs of chromosomes in our cells. Chromosomes are made up of DNA. Our DNA consists of 3 billion base pairs. DNA bases are A, C, G, T bases.

The number of genes in our genome is around 20-25 thousand. Each triple base in the protein-encoding DNA portion forms a codon. Each codon encodes an amino acid in the ribosome. With the combination of amino acids, proteins are formed. Proteins are the building blocks of us and are molecules that carry out all our vital functions.

Genetic differences

between individuals


All human beings are 99.9 percent identical in their genetic makeup. Differences in the remaining 0.1 percent hold important clues about the causes of diseases and adverse drug reactions. These differences:

- Single nucleotide polymorphisms (SNPs),
 - Single base additions (insertions),
 - Single base deletions (deletions),
 - Big deletions,
 - Variable number Tandem repeats,
 - Gene copy number variations (CNVs).

SNPs constitute the most common DNA difference in the human genome. If the difference in DNA in a population is greater than 1%, this change is called genetic polymorphism. SNPs can take place:

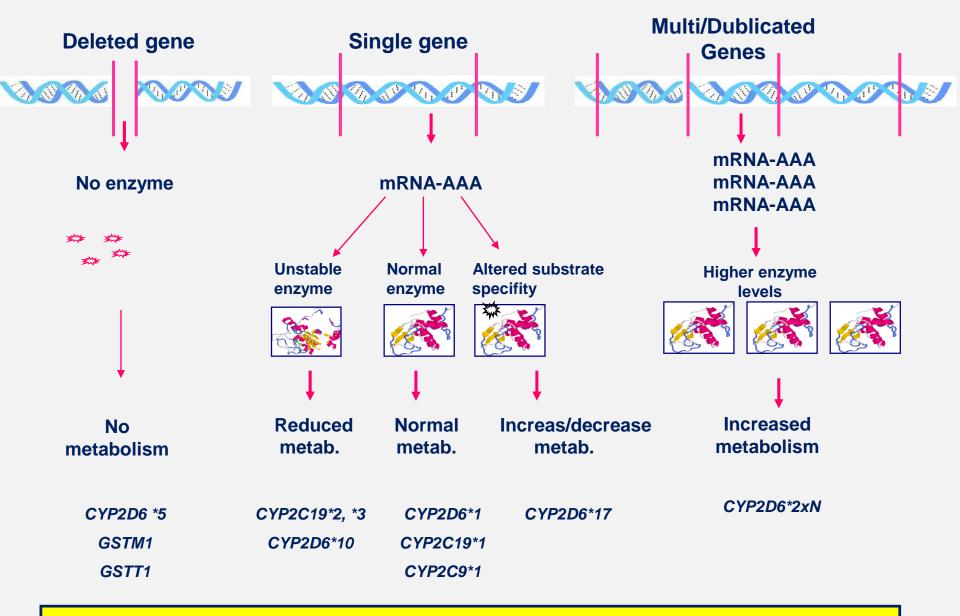
- 1. In exon: synonymous and non-synonymous (one in amino acid results in a change),
- 2. In Intron,
- **3.** Among the genes,
- 4. In the regulatory region

SNPs in our genome

NUMBERS

There are approximately 3 billion base pairs (bp) in the human genome; there is a change every 100-300 bp. So we have about 10 million SNPs in our genome.

FUNCTIONAL Alterations in gene expression, Decrease or increase enzyme activity, Stopping protein synthesis, Changes in protein activity, stability and interaction,


 Alteration in mRNA stability, splysing, and translation.

DNA — RNA — Protein

Function (Activity : increase or decrease)

The steps of SNPs in the field of pharmacogenetics:

- **1. SNP discovery**,
- **2.** SNP function,
- **3.** SNP's relationship with drug response and toxicity.

Some of the major molecular mechanisms that can result in altered human drug metabolism.

Functional genetic differences considered in drug development and treatment

Gene / Protein	Abbrevi.	Associated molecules / substrates
Glucose-6-phosphate dehydrogenase	G6PDH	Drugs that forming electrophilic reactive metabolite
Butyrylcholinesterase	BCHE	Mivakurium, Procaine, succinylcholine
N-acetyltransferase-2	NAT2	Isoniazid, Aromatic amines
Cytochrome P-450 2D6	CYP2D6	Amitriptyline, Clomipramine, Paraoxetine, Tamoxifen
Cytochrome P-450 2C19	CYP2C19	Omeprazole, Diazepam, Citalopram, Clopidogrel
Cytochrome P-450 2C9	CYP2C9	Warfarin, Tolbutamid, Diclofenac, Lozartan
thiopurine S- methyltransferase	ТРМТ	6-mercaptopurine, 6-thioguanine, Azathiopurine
Dihydropyrimidine dehydrogenase	DPD	5-Fluorouracil, Capecitabine
Uridine diphospho- glucuronosyl transferase	UGT1A1	Bilirubin, Irinotecan