(FZM 114) FíZíK -II Dr. Çağın KAMIŞCIOĞLU

İÇERİK

+ Doğru Akım Devreleri
+ RC Devreleri
+ Kondansatör Durumu- Dolarken
+ Kondansatör Durumu- Boşalırken

DOĞRU AKIM DEVRELERİ -RC DEVRELERI

Bu zamana kadar sabit akımlı devereler ile ilgilendik ve hesaplarımız akımın değişmediğini düşünerek yaptık. Peki ya devrede akım değişirse?

RC DEVRELERİ

Bir kondansatör ve bir direncin seri olarak bağlanması ile oluşturulmuş bir devredir.

$$
C \equiv \frac{Q}{\Delta V}
$$

Bu şekildeki gibi iki iletkenin eşit büyüklükte ve zıt işaretli yük taşıdığını varsayalım, bu iletkenin böyle birleşimine kondansatör denir.
$R \equiv \frac{\ell}{\sigma A} \equiv \frac{\Delta V}{I}$
$R \equiv \rho \frac{\ell}{A}$

Biliyoruz ki dirençler devrede akımı sınırlamakla görevlidir.

RC DEVRELERİ

4) Zamanla kondansatörün levhaları yüklenir bu nedenle levhalar arası bir potansiyel fark oluşur. Bu ne zamana kadar devam eder? Bu durum devreyi besleyen güç kaynağının EMK sina bağlıdır. Kondansatör bu emk ile eşitlendiğınde devrede akım sıfir olur. Çünkü devredeki batarya ve kondansatör artlk eşitlenmiştir.

RC DEVRELERİ

Bu devreye Kirchhoff yasasini uygulayalim.(gerilim yasasi)
Kapalı bir devrede devre elemanlarının uçları I arasindaki potansiyel farkin toplamı uretecin potansiyelini verir.

Kapalı bir devrede tum devre elemanlarmin uçları arasindaki potansiyel farkin toplamı sifirdir.

$$
\boldsymbol{\varepsilon}-\frac{q}{C}-I R=0
$$

Güç kaynağı

Kondansator pozitif plakadan negatif plakaya doğru gidilmesi potansiyelin düşmesini temsil eder.

RC DEVRELERİ

$$
\boldsymbol{\varepsilon}-\frac{q}{C}-I R=0
$$

$t=0$ anında devreyi başlatmıştik, biliyoruzki bu anda kondansatör üzerinde herhangi bir yük yok yani $q=0$. O halde $t=0$ da;

$$
I_{0}=\frac{\boldsymbol{\varepsilon}}{R}
$$

Devredeki

 maksimum akım değeri$t=5 t$ zaman sonra kondansatör maksimum yük değerine ulaşmaktadır. Bu durumda kondasatör daha fazla yüklenemeyeceği için devrede akım=0 olur. Bu durumda bu eşitlikte $I=0$ yazarsak;

$$
Q=C \boldsymbol{\varepsilon}
$$

kondansatördeki
maksimum
yük değeri

ZAMANLA NASIL DEĞİŞİYOR?

Devredeki yük ve akımin zamana bağll olarak nasil değiştiğini bilmek istiyoruz? O halde elimizdeki tek denklemi çozmemiz lazim :)

$$
\varepsilon-\frac{q}{C}-I R=0
$$

$$
\frac{d q}{d t}=\frac{\boldsymbol{\varepsilon}}{R}-\frac{q}{R C}
$$

$$
I=d q / d t y a z d \imath k
$$

$$
\frac{d q}{d t}=\frac{C \boldsymbol{\varepsilon}}{R C}-\frac{q}{R C}=-\frac{q-C \boldsymbol{\varepsilon}}{R C}
$$

ZAMANLA NASIL DEĞİŞİYOR?

Şimdi bu denklemi $d t$ ile çarpar $q-C \mathcal{E}$ ile bölersek,

$$
\frac{d q}{q-C \boldsymbol{\varepsilon}}=-\frac{1}{R C} d t
$$

$t=0$ da $q=0$ olduğunu biliyoruz. Bu durumda integral alalim.

$$
\begin{aligned}
\int_{0}^{q} \frac{d q}{q-C \boldsymbol{\varepsilon}} & =-\frac{1}{R C} \int_{0}^{t} d t \\
\ln \left(\frac{q-C \boldsymbol{\mathcal { E }}}{-C \boldsymbol{\varepsilon}}\right) & =-\frac{t}{R C}
\end{aligned}
$$

$$
q(t)=C \boldsymbol{\mathcal { E }}\left(1-e^{-t / R C}\right)=Q\left(1-e^{-t / R C}\right)
$$

Kondansatör yuklenirken yükün zamana bağllığg

KONDANSATÖR DURUMU (DOLARIKEN)

$$
q(t)=C \boldsymbol{\mathcal { E }}\left(1-e^{-t / R C}\right)=Q\left(1-e^{-t / R C}\right)
$$

Bu ifadenin zamana göre diferansiyelini alalim ve akimin degerini bulalim.

$$
I(t)=\frac{\boldsymbol{\varepsilon}}{R} e^{-t / R C}
$$

Kondansatör yuklenirken
yükün zamana bağlllığı

Kondansatör yuklenirken
akımın zamana bağlılığı

KONDANSATÖR DURUMU (DOLARKEN)

$$
I(t)=\frac{\boldsymbol{\varepsilon}}{R} e^{-t / R C}
$$

$$
q(t)=Q\left(1-e^{-t / R C}\right)
$$

$$
\begin{aligned}
& e^{\wedge} 0=1 \\
& e^{\wedge}(- \text { inf })=0
\end{aligned}
$$

ZAMAN SABİTİ

$$
[\tau]=[R C]=\left[\frac{\Delta V}{I} \times \frac{Q}{\Delta V}\right]=\left[\frac{Q}{Q / \Delta t}\right]=[\Delta t]=\mathrm{T}
$$

Akımın başlangzç değerinin 1/e değerine düşmesi içın geçen zamandır.

$\tau=$ Zaman sabiti $\tau=$ R.C

R: Ohm ise ve C: Farad ise τ : saniye olur

ZAMAN SABİTİ

Devre çalışmaya başladı, τ zaman sonra; yükün zamana göre grafiğini incleyelim. τ zaman sabiti kadar sonra yük C \mathscr{E} maksimum değerinin \%63.2'sine ulaşır.

Akimin zamana göre grafiğini incleyelim. $t=0$ da akim $I=\mathscr{E} / R$ dir ve τ zaman sabiti kadar sonra akım maksimum değerinin \%36.8'ine düşer.

KONDANSATÖR DURUMU (DOLARKEN)

28:
Kondansatörün yüklenmesi tamamlandığında bataryanın verdiği enerji, $0 \mathcal{E}=C \mathcal{E}^{2}$ dir. Kondansatör tamamen yüklendikten sonra, kondansatör içerisinde depolanan enerji, $\frac{1}{2} Q \mathcal{E}=\frac{1}{2} C \mathcal{E}^{2}$ dir ki bu, batarya tarafından sağlanan enerjinin tain olarak yarısıdır. Batarya tarafından sağlanan enerjinin geri kalå yarısmın, direnç içerisinde iç enerji olarak görüneceğini göstermek, bir problem olarak bırakılmıstır (Problem 60).

Bu zamana kadar oluşturduğumuz devrede kondansatöriü doldurduk ve artik çeşitli görevlerde kullanılabilir hale geldi. Şimdi kondansatörü boşaltalım

KONDANSATÖR DURUMU (BOŞALIRKEN)

Kondansatör dolarken
Kondansatör boşalırken

KONDANSATÖR DURUMU (BOŞALIRKEN)

Bu devreye Kirchhoff yasasini uygulayalim.(gerilim yasasi)
Kapalı bir devrede devre elemanlarının uçları arasindaki potansiyel farkin toplamı uretecin potansiyelini verir.

Kapalı bir devrede tum devre elemanlarmin uçları arasindaki potansiyel farkin toplamı sifirdir.

$$
\begin{aligned}
&-\frac{q}{C}-I R=0 \quad I=d q / d t y a z d \imath k \\
&-R \frac{d q}{d t}=\frac{q}{C} \\
& \frac{d q}{q}=-\frac{1}{R C} d t
\end{aligned}
$$

KONDANSATÖR DURUMU (BOŞALIRKEN)

$$
\begin{aligned}
& \int_{Q}^{q} \frac{d q}{q}=-\frac{1}{R C} \int_{0}^{t} d t \\
& \ln \left(\frac{q}{Q}\right)=-\frac{t}{R C} \\
& q(t)=Q e^{-t / R C} \\
& \text { Kondansatör boşalırken } \\
& \text { yükün zamana bağlllığı }
\end{aligned}
$$

Kondansatör boşalırken

$$
I(t)=\frac{d q}{d t}=\frac{d}{d t}\left(Q e^{-t / R C}\right)=-\frac{Q}{R C} e^{-t / R C}
$$

akımın zamana bağlılığl

KONDANSATÖR

$$
q(t)=Q\left(1-e^{-t / R C}\right)
$$

$$
q(t)=Q e^{-t / R C}
$$

$$
I(t)=\frac{\varepsilon}{R} e^{-t / R C}
$$

$$
I(t)=-\frac{Q}{R C} e^{-t / R C}
$$

The charge on a capacitor during charging and discharging

ÖRNEK

ÖRNEK 28.11 RC Devresindeki Bir Kondansatörün Yüklenmesi

Yüksüz bir kondansatör ve bir direnç Şekil 28.19 'daki gibi seri olarak bağlanıyor. $\mathcal{E}=12,0 \mathrm{~V}, C=5,00 \mu F \mathrm{ve} R=8 \times 10^{5}$ Ω ise, devrenin zaman sabitini, kondansatör üzerindeki maksimum yükü ve devredeki maksimum akımı bulunuz. Yük ve akımı zamanmn fonksiyonu olarak ifade ediniz.

ÇÖüm Devrenin zaman sabiti $\tau=R C=\left(8,00 \times 10^{5} \Omega\right)$ $\left(5,00 \times 10^{-6} \mathrm{~F}\right)=4,00 \mathrm{~s}$ 'dir. Kondansatör üzerindeki maksi- / mum yük $Q=C \mathcal{E}=\left(5 \times 10^{-6} \mathrm{~F}\right)(12 \mathrm{~V})=60 \mu \mathrm{C}$ ve devredeki maksimum akım $I_{0}=\boldsymbol{E} / R=(12 \mathrm{~V}) /\left(8 \times 10^{5} \Omega\right)=15,0 \mu \mathrm{~A}$ dir. Bu değerleri ve Eş. 28.14 ve Ess. $28.15^{\prime} \mathrm{i}$ kullanılırsa

$$
\begin{aligned}
& q(t)=(60,0 \mu \mathrm{C})\left(1-e^{1 / 4}\right) \\
& I(t)=(15,0 \mu \mathrm{~A}) e^{-1 / \mathrm{s}}
\end{aligned}
$$

$$
q(t)=Q\left(1-e^{-t / R C}\right)
$$

elde edilir. Bu fonksiyonların grafikleri Şekil 28.20^{\prime} de verilmiştir.

$$
I(t)=\frac{\boldsymbol{\varepsilon}}{R} e^{-t / R C}
$$

ÖRNEK

ÖNEK 28.12 Bir RC Devresindeki Kondansatörün Boşalması

Şekil 28.18'deki gibi R direnci üzerinden boşalan bir C kondansatörü veriliyor. (a) Kaç zaman sabitinden sonra kondansatör üzerindeki yük azalması, başlangıç değerinin dörtte birine essit olacaktur?

$$
\begin{aligned}
& q(t)=Q e^{-t / R C} \\
& \frac{Q}{4}=Q e^{-t / R C} \\
& \frac{1}{4}=e^{-t / R C} \\
& I(t)=-\frac{Q}{R C} e^{-t / R C}
\end{aligned}
$$

eide ederiz. Her iki tarafin logaritmasını alarak,

$$
\begin{aligned}
\mathscr{H} \ln 4 & =-\frac{t}{R C} \\
t & =R C(\ln 4)=1,39 R C=1,397
\end{aligned}
$$

ELEKTRİK ÖLÇEN AYGITLAR

Devrede herşeyin yolunda gidip gitmediğini test etmemiz gerekir bazen. Bu nedenle çeşitli aygıtlardan yararlanırız. Bunların en başında Ampermetre ve Voltmetre bulunmaktadrr.

Potansiyel farkı ölçen aygıta Voltmetre denilmektedir. Devreye paralel bağlanvr. Ideal bir voltmetre sonsuz dirence sahiptir.

Akım ölçen aygıta Ampetre denilmektedir. Devreye
seri bağlanır. Ideal bir ampermetre sifir dirence sahiptir.

KAYNAKLAR

1. http://www.seckin.com.tr/kitap/413951887 ("Üniversiteler için Fizik", B. Karaoğlu, Seçkin Yayıncılık, 2012).
2.Fen ve Mühendislik için Fizik Cilt-2, R.A.Serway,R.J.Beichner,5.Baskıdan çeviri, (ÇE) K. Çolakoğlu, Palme Yayıncılık.
2. Üniversite Fiziği Cilt-I, H.D. Young ve R.A.Freedman, (Çeviri Editörü: Prof. Dr. Hilmi Ünlü) 12. Baskı, Pearson Education Yayıncılık 2009, Ankara.
3. https://www.youtube.com/user/crashcourse
