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856 C H A P T E R  2 7 Current and Resistance

One of the truly remarkable features of superconductors is that once a current
is set up in them, it persists without any applied potential difference (because R ! 0).
Steady currents have been observed to persist in superconducting loops for several
years with no apparent decay!

An important and useful application of superconductivity is in the develop-
ment of superconducting magnets, in which the magnitudes of the magnetic field
are about ten times greater than those produced by the best normal electromag-
nets. Such superconducting magnets are being considered as a means of storing en-
ergy. Superconducting magnets are currently used in medical magnetic resonance
imaging (MRI) units, which produce high-quality images of internal organs without
the need for excessive exposure of patients to x-rays or other harmful radiation.

For further information on superconductivity, see Section 43.8.

ELECTRICAL ENERGY AND POWER
If a battery is used to establish an electric current in a conductor, the chemical en-
ergy stored in the battery is continuously transformed into kinetic energy of the
charge carriers. In the conductor, this kinetic energy is quickly lost as a result of
collisions between the charge carriers and the atoms making up the conductor,
and this leads to an increase in the temperature of the conductor. In other words,
the chemical energy stored in the battery is continuously transformed to internal
energy associated with the temperature of the conductor.

Consider a simple circuit consisting of a battery whose terminals are con-
nected to a resistor, as shown in Figure 27.14. (Resistors are designated by the sym-
bol .) Now imagine following a positive quantity of charge "Q that is
moving clockwise around the circuit from point a through the battery and resistor
back to point a. Points a and d are grounded (ground is designated by the symbol

); that is, we take the electric potential at these two points to be zero. As the
charge moves from a to b through the battery, its electric potential energy U

increases by an amount "V "Q (where "V is the potential difference between b and
a), while the chemical potential energy in the battery decreases by the same
amount. (Recall from Eq. 25.9 that However, as the charge moves
from c to d through the resistor, it loses this electric potential energy as it collides
with atoms in the resistor, thereby producing internal energy. If we neglect the re-
sistance of the connecting wires, no loss in energy occurs for paths bc and da.
When the charge arrives at point a, it must have the same electric potential energy
(zero) that it had at the start.5 Note that because charge cannot build up at any
point, the current is the same everywhere in the circuit.

The rate at which the charge "Q loses potential energy in going through the
resistor is

where I is the current in the circuit. In contrast, the charge regains this energy
when it passes through the battery. Because the rate at which the charge loses en-
ergy equals the power delivered to the resistor (which appears as internal en-
ergy), we have
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Figure 27.14 A circuit consisting
of a resistor of resistance R and a
battery having a potential differ-
ence "V across its terminals. Posi-
tive charge flows in the clockwise
direction. Points a and d are
grounded.

5 Note that once the current reaches its steady-state value, there is no change in the kinetic energy of
the charge carriers creating the current.

28.4 RC Circuits 883

difference across the resistor. We have used the sign conventions discussed earlier
for the signs on ! and IR . For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represents a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and I are instantaneous values that depend on time (as opposed to steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit I0 is a maximum and is equal to

(current at (28.12)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q ,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting

into Equation 28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge
and current, we must solve Equation 28.11—a single equation containing two vari-
ables, q and I. The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing out of and
into the capacitor plates. This current is equal to the time rate of change of the
charge on the capacitor plates. Thus, we substitute into Equation 28.11
and rearrange the equation:

To find an expression for q , we first combine the terms on the right-hand side:
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"
C!
RC

#
q

RC
" #

q # C!
RC

dq
dt

"
!
R

#
q

RC

I " dq /dt

Q " C!
I " 0

t " 0)I0 "
!
R

(t " 0),

Maximum current

Maximum charge on the capacitor

+ –

Resistor

Battery

Capacitor

Switch

(a)

ε
(b)

S

t < 0

R

C

(c) t > 0

ε

R

S

I
q–

+ q

Figure 28.16 (a) A capacitor in series with a resistor, switch, and battery. (b) Circuit diagram
representing this system at time before the switch is closed. (c) Circuit diagram at time

after the switch has been closed.t $ 0,
t % 0,

Bu zamana kadar sabit akımlı devereler ile ilgilendik ve hesaplarımızı 

akımın değişmediğini düşünerek yaptık. Peki ya devrede akım değişirse?
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difference across the resistor. We have used the sign conventions discussed earlier
for the signs on ! and IR . For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represents a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and I are instantaneous values that depend on time (as opposed to steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit I0 is a maximum and is equal to

(current at (28.12)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q ,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting

into Equation 28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge
and current, we must solve Equation 28.11—a single equation containing two vari-
ables, q and I. The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing out of and
into the capacitor plates. This current is equal to the time rate of change of the
charge on the capacitor plates. Thus, we substitute into Equation 28.11
and rearrange the equation:

To find an expression for q , we first combine the terms on the right-hand side:
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Figure 28.16 (a) A capacitor in series with a resistor, switch, and battery. (b) Circuit diagram
representing this system at time before the switch is closed. (c) Circuit diagram at time

after the switch has been closed.t $ 0,
t % 0,

Bir kondansatör ve bir direncin seri olarak  

bağlanması ile oluşturulmuş bir devredir.

C

Biliyoruz ki dirençler devrede  

akımı sınırlamakla görevlidir.

Bu şekildeki gibi iki iletkenin  eşit büyüklükte ve zıt işaretli yük 
taşıdığını varsayalım, bu iletkenin  böyle birleşimine kondansatör 
denir.

804 C H A P T E R  2 6 Capacitance and Dielectrics

n this chapter, we discuss capacitors—devices that store electric charge. Capaci-
tors are commonly used in a variety of electric circuits. For instance, they are
used to tune the frequency of radio receivers, as filters in power supplies, to

eliminate sparking in automobile ignition systems, and as energy-storing devices in
electronic flash units.

A capacitor consists of two conductors separated by an insulator. We shall see
that the capacitance of a given capacitor depends on its geometry and on the ma-
terial—called a dielectric—that separates the conductors.

DEFINITION OF CAPACITANCE
Consider two conductors carrying charges of equal magnitude but of opposite
sign, as shown in Figure 26.1. Such a combination of two conductors is called a ca-
pacitor. The conductors are called plates. A potential difference !V exists between
the conductors due to the presence of the charges. Because the unit of potential
difference is the volt, a potential difference is often called a voltage. We shall use
this term to describe the potential difference across a circuit element or between
two points in space.

What determines how much charge is on the plates of a capacitor for a given
voltage? In other words, what is the capacity of the device for storing charge at a
particular value of !V ? Experiments show that the quantity of charge Q on a ca-
pacitor1 is linearly proportional to the potential difference between the conduc-
tors; that is, The proportionality constant depends on the shape and sepa-
ration of the conductors.2 We can write this relationship as if we define
capacitance as follows:

Q " C !V
Q # !V.

26.1

The capacitance C of a capacitor is the ratio of the magnitude of the charge on
either conductor to the magnitude of the potential difference between them:

(26.1)C !
Q

!V

I

Note that by definition capacitance is always a positive quantity. Furthermore, the po-
tential difference !V is always expressed in Equation 26.1 as a positive quantity. Be-
cause the potential difference increases linearly with the stored charge, the ratio
Q /!V is constant for a given capacitor. Therefore, capacitance is a measure of a
capacitor’s ability to store charge and electric potential energy.

From Equation 26.1, we see that capacitance has SI units of coulombs per volt.
The SI unit of capacitance is the farad (F), which was named in honor of Michael
Faraday:

The farad is a very large unit of capacitance. In practice, typical devices have ca-
pacitances ranging from microfarads (10$6 F) to picofarads (10$12 F). For practi-
cal purposes, capacitors often are labeled “mF” for microfarads and “mmF” for mi-
cromicrofarads or, equivalently, “pF” for picofarads.

1 F " 1 C/V

Definition of capacitance

1 Although the total charge on the capacitor is zero (because there is as much excess positive charge
on one conductor as there is excess negative charge on the other), it is common practice to refer to the
magnitude of the charge on either conductor as “the charge on the capacitor.”
2 The proportionality between !V and Q can be proved from Coulomb’s law or by experiment.

13.5

–Q

+Q

Figure 26.1 A capacitor consists
of two conductors carrying charges
of equal magnitude but opposite
sign.
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Kesit alani A olan ve boyu  olan bir iletkenin 
iki ucu arasina uygulanan  Va -Vb potansiyel 
farkı iletkende bir E elektrik alanı meydana 
getirir ve bu da bir akım oluşturur.

Bu durumda elektrik alan ve potansiyel farkı; ΔV = Eℓ

Akım yoğunluğunun büyüklüğü; J =σE =σ ΔV
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difference across the resistor. We have used the sign conventions discussed earlier
for the signs on ! and IR . For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represents a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and I are instantaneous values that depend on time (as opposed to steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit I0 is a maximum and is equal to

(current at (28.12)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q ,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting

into Equation 28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge
and current, we must solve Equation 28.11—a single equation containing two vari-
ables, q and I. The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing out of and
into the capacitor plates. This current is equal to the time rate of change of the
charge on the capacitor plates. Thus, we substitute into Equation 28.11
and rearrange the equation:

To find an expression for q , we first combine the terms on the right-hand side:
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dt

"
C!
RC

#
q

RC
" #

q # C!
RC

dq
dt

"
!
R

#
q

RC

I " dq /dt

Q " C!
I " 0

t " 0)I0 "
!
R

(t " 0),

Maximum current

Maximum charge on the capacitor

+ –

Resistor

Battery

Capacitor

Switch

(a)

ε
(b)

S

t < 0

R

C

(c) t > 0

ε

R

S

I
q–

+ q

Figure 28.16 (a) A capacitor in series with a resistor, switch, and battery. (b) Circuit diagram
representing this system at time before the switch is closed. (c) Circuit diagram at time

after the switch has been closed.t $ 0,
t % 0,

Bu devrede; 

1) S anahtarı kapatıldıktan sonra devrede akım  
akmaya başlar ve bu zamanı t=0 alalım. 

2) Devrede akımın olması ile kondansatör  yüklenmeye 
başlar. 

3) Bu sırada kondansatörün levhaları arasından yükün 
atması ve karşı levhaya geçmesi mümkün değildir.

4) Zamanla kondansatörün levhaları yüklenir bu nedenle levhalar arası bir potansiyel 

fark oluşur. Bu ne zamana kadar devam eder? Bu durum devreyi besleyen güç kaynağının 

EMK sina bağlıdır. Kondansatör bu emk ile eşitlendiğınde devrede akım sıfır olur. 

Çünkü devredeki batarya ve kondansatör artık eşitlenmiştir.
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difference across the resistor. We have used the sign conventions discussed earlier
for the signs on ! and IR . For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represents a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and I are instantaneous values that depend on time (as opposed to steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit I0 is a maximum and is equal to

(current at (28.12)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q ,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting

into Equation 28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge
and current, we must solve Equation 28.11—a single equation containing two vari-
ables, q and I. The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing out of and
into the capacitor plates. This current is equal to the time rate of change of the
charge on the capacitor plates. Thus, we substitute into Equation 28.11
and rearrange the equation:

To find an expression for q , we first combine the terms on the right-hand side:
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Figure 28.16 (a) A capacitor in series with a resistor, switch, and battery. (b) Circuit diagram
representing this system at time before the switch is closed. (c) Circuit diagram at time

after the switch has been closed.t $ 0,
t % 0,

Bu devreye Kirchhoff yasasini uygulayalim.(gerilim 
yasasi)

882 C H A P T E R  2 8 Direct Current Circuits

4 In previous discussions of capacitors, we assumed a steady-state situation, in which no current was
present in any branch of the circuit containing a capacitor. Now we are considering the case before the
steady-state condition is realized; in this situation, charges are moving and a current exists in the wires
connected to the capacitor.

RC CIRCUITS
So far we have been analyzing steady-state circuits, in which the current is con-
stant. In circuits containing capacitors, the current may vary in time. A circuit con-
taining a series combination of a resistor and a capacitor is called an RC circuit.

Charging a Capacitor

Let us assume that the capacitor in Figure 28.16 is initially uncharged. There is no
current while switch S is open (Fig. 28.16b). If the switch is closed at how-
ever, charge begins to flow, setting up a current in the circuit, and the capacitor
begins to charge.4 Note that during charging, charges do not jump across the ca-
pacitor plates because the gap between the plates represents an open circuit. In-
stead, charge is transferred between each plate and its connecting wire due to the
electric field established in the wires by the battery, until the capacitor is fully
charged. As the plates become charged, the potential difference across the capaci-
tor increases. The value of the maximum charge depends on the voltage of the
battery. Once the maximum charge is reached, the current in the circuit is zero
because the potential difference across the capacitor matches that supplied by the
battery.

To analyze this circuit quantitatively, let us apply Kirchhoff’s loop rule to the
circuit after the switch is closed. Traversing the loop clockwise gives

(28.11)

where q/C is the potential difference across the capacitor and IR is the potential

! "
q
C

" IR # 0

t # 0,

28.4

this interpretation of the direction, however, we must con-
tinue to use this negative value for I2 in subsequent calcula-
tions because our equations were established with our origi-
nal choice of direction.

Using in Equations (3) and (1) gives

(b) What is the charge on the capacitor?

Solution We can apply Kirchhoff’s loop rule to loop bghab
(or any other loop that contains the capacitor) to find the po-
tential difference $Vcap across the capacitor. We enter this po-
tential difference in the equation without reference to a sign
convention because the charge on the capacitor depends
only on the magnitude of the potential difference. Moving
clockwise around this loop, we obtain

 $Vcap # 11.0 V

"8.00 V % $Vcap " 3.00 V # 0 

1.02 AI3 #1.38 AI1 #

I2 # "0.364 A

Because (see Eq. 26.1), the charge on the capac-
itor is

Why is the left side of the capacitor positively charged?

Exercise Find the voltage across the capacitor by traversing
any other loop.

Answer 11.0 V.

Exercise Reverse the direction of the 3.00-V battery and an-
swer parts (a) and (b) again.

Answer (a) 
(b) 30 &C.

I3 # 1.02 A;I2 # "0.364 A,I1 # 1.38 A,

66.0 &CQ # (6.00 &F)(11.0 V) #

Q # C $Vcap

Güç kaynağı
C=q/V V=IR

Kapalı bir devrede  devre elemanlarının uçları  
arasındaki potansiyel farkın toplamı uretecin  
potansiyelini verir. 

Kapalı bir devrede  tum devre elemanlarının uçları  
arasındaki potansiyel farkın toplamı sifirdir.

Kondansator pozitif plakadan 
negatif plakaya doğru gidilmesi 
potansiyelin düşmesini temsil 
eder.
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difference across the resistor. We have used the sign conventions discussed earlier
for the signs on ! and IR . For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represents a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and I are instantaneous values that depend on time (as opposed to steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit I0 is a maximum and is equal to

(current at (28.12)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q ,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting

into Equation 28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge
and current, we must solve Equation 28.11—a single equation containing two vari-
ables, q and I. The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing out of and
into the capacitor plates. This current is equal to the time rate of change of the
charge on the capacitor plates. Thus, we substitute into Equation 28.11
and rearrange the equation:

To find an expression for q , we first combine the terms on the right-hand side:
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Figure 28.16 (a) A capacitor in series with a resistor, switch, and battery. (b) Circuit diagram
representing this system at time before the switch is closed. (c) Circuit diagram at time

after the switch has been closed.t $ 0,
t % 0,

882 C H A P T E R  2 8 Direct Current Circuits

4 In previous discussions of capacitors, we assumed a steady-state situation, in which no current was
present in any branch of the circuit containing a capacitor. Now we are considering the case before the
steady-state condition is realized; in this situation, charges are moving and a current exists in the wires
connected to the capacitor.

RC CIRCUITS
So far we have been analyzing steady-state circuits, in which the current is con-
stant. In circuits containing capacitors, the current may vary in time. A circuit con-
taining a series combination of a resistor and a capacitor is called an RC circuit.

Charging a Capacitor

Let us assume that the capacitor in Figure 28.16 is initially uncharged. There is no
current while switch S is open (Fig. 28.16b). If the switch is closed at how-
ever, charge begins to flow, setting up a current in the circuit, and the capacitor
begins to charge.4 Note that during charging, charges do not jump across the ca-
pacitor plates because the gap between the plates represents an open circuit. In-
stead, charge is transferred between each plate and its connecting wire due to the
electric field established in the wires by the battery, until the capacitor is fully
charged. As the plates become charged, the potential difference across the capaci-
tor increases. The value of the maximum charge depends on the voltage of the
battery. Once the maximum charge is reached, the current in the circuit is zero
because the potential difference across the capacitor matches that supplied by the
battery.

To analyze this circuit quantitatively, let us apply Kirchhoff’s loop rule to the
circuit after the switch is closed. Traversing the loop clockwise gives

(28.11)

where q/C is the potential difference across the capacitor and IR is the potential

! "
q
C

" IR # 0

t # 0,

28.4

this interpretation of the direction, however, we must con-
tinue to use this negative value for I2 in subsequent calcula-
tions because our equations were established with our origi-
nal choice of direction.

Using in Equations (3) and (1) gives

(b) What is the charge on the capacitor?

Solution We can apply Kirchhoff’s loop rule to loop bghab
(or any other loop that contains the capacitor) to find the po-
tential difference $Vcap across the capacitor. We enter this po-
tential difference in the equation without reference to a sign
convention because the charge on the capacitor depends
only on the magnitude of the potential difference. Moving
clockwise around this loop, we obtain

 $Vcap # 11.0 V

"8.00 V % $Vcap " 3.00 V # 0 

1.02 AI3 #1.38 AI1 #

I2 # "0.364 A

Because (see Eq. 26.1), the charge on the capac-
itor is

Why is the left side of the capacitor positively charged?

Exercise Find the voltage across the capacitor by traversing
any other loop.

Answer 11.0 V.

Exercise Reverse the direction of the 3.00-V battery and an-
swer parts (a) and (b) again.

Answer (a) 
(b) 30 &C.

I3 # 1.02 A;I2 # "0.364 A,I1 # 1.38 A,

66.0 &CQ # (6.00 &F)(11.0 V) #

Q # C $Vcap

t=0 anında devreyi başlatmıştik, biliyoruzki bu 
anda kondansatör üzerinde herhangi bir yük yok 
yani q=0. O halde t=0 da; 
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difference across the resistor. We have used the sign conventions discussed earlier
for the signs on ! and IR . For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represents a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and I are instantaneous values that depend on time (as opposed to steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit I0 is a maximum and is equal to

(current at (28.12)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q ,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting

into Equation 28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge
and current, we must solve Equation 28.11—a single equation containing two vari-
ables, q and I. The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing out of and
into the capacitor plates. This current is equal to the time rate of change of the
charge on the capacitor plates. Thus, we substitute into Equation 28.11
and rearrange the equation:

To find an expression for q , we first combine the terms on the right-hand side:
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after the switch has been closed.t $ 0,
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for the signs on ! and IR . For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represents a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and I are instantaneous values that depend on time (as opposed to steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit I0 is a maximum and is equal to

(current at (28.12)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q ,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting

into Equation 28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge
and current, we must solve Equation 28.11—a single equation containing two vari-
ables, q and I. The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing out of and
into the capacitor plates. This current is equal to the time rate of change of the
charge on the capacitor plates. Thus, we substitute into Equation 28.11
and rearrange the equation:

To find an expression for q , we first combine the terms on the right-hand side:
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difference across the resistor. We have used the sign conventions discussed earlier
for the signs on ! and IR . For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represents a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and I are instantaneous values that depend on time (as opposed to steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit I0 is a maximum and is equal to

(current at (28.12)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q ,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting

into Equation 28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge
and current, we must solve Equation 28.11—a single equation containing two vari-
ables, q and I. The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing out of and
into the capacitor plates. This current is equal to the time rate of change of the
charge on the capacitor plates. Thus, we substitute into Equation 28.11
and rearrange the equation:

To find an expression for q , we first combine the terms on the right-hand side:
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4 In previous discussions of capacitors, we assumed a steady-state situation, in which no current was
present in any branch of the circuit containing a capacitor. Now we are considering the case before the
steady-state condition is realized; in this situation, charges are moving and a current exists in the wires
connected to the capacitor.

RC CIRCUITS
So far we have been analyzing steady-state circuits, in which the current is con-
stant. In circuits containing capacitors, the current may vary in time. A circuit con-
taining a series combination of a resistor and a capacitor is called an RC circuit.

Charging a Capacitor

Let us assume that the capacitor in Figure 28.16 is initially uncharged. There is no
current while switch S is open (Fig. 28.16b). If the switch is closed at how-
ever, charge begins to flow, setting up a current in the circuit, and the capacitor
begins to charge.4 Note that during charging, charges do not jump across the ca-
pacitor plates because the gap between the plates represents an open circuit. In-
stead, charge is transferred between each plate and its connecting wire due to the
electric field established in the wires by the battery, until the capacitor is fully
charged. As the plates become charged, the potential difference across the capaci-
tor increases. The value of the maximum charge depends on the voltage of the
battery. Once the maximum charge is reached, the current in the circuit is zero
because the potential difference across the capacitor matches that supplied by the
battery.

To analyze this circuit quantitatively, let us apply Kirchhoff’s loop rule to the
circuit after the switch is closed. Traversing the loop clockwise gives

(28.11)

where q/C is the potential difference across the capacitor and IR is the potential

! "
q
C

" IR # 0

t # 0,

28.4

this interpretation of the direction, however, we must con-
tinue to use this negative value for I2 in subsequent calcula-
tions because our equations were established with our origi-
nal choice of direction.

Using in Equations (3) and (1) gives

(b) What is the charge on the capacitor?

Solution We can apply Kirchhoff’s loop rule to loop bghab
(or any other loop that contains the capacitor) to find the po-
tential difference $Vcap across the capacitor. We enter this po-
tential difference in the equation without reference to a sign
convention because the charge on the capacitor depends
only on the magnitude of the potential difference. Moving
clockwise around this loop, we obtain

 $Vcap # 11.0 V

"8.00 V % $Vcap " 3.00 V # 0 

1.02 AI3 #1.38 AI1 #

I2 # "0.364 A

Because (see Eq. 26.1), the charge on the capac-
itor is

Why is the left side of the capacitor positively charged?

Exercise Find the voltage across the capacitor by traversing
any other loop.

Answer 11.0 V.

Exercise Reverse the direction of the 3.00-V battery and an-
swer parts (a) and (b) again.

Answer (a) 
(b) 30 &C.

I3 # 1.02 A;I2 # "0.364 A,I1 # 1.38 A,

66.0 &CQ # (6.00 &F)(11.0 V) #

Q # C $Vcap
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difference across the resistor. We have used the sign conventions discussed earlier
for the signs on ! and IR . For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represents a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and I are instantaneous values that depend on time (as opposed to steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit I0 is a maximum and is equal to

(current at (28.12)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q ,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting

into Equation 28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge
and current, we must solve Equation 28.11—a single equation containing two vari-
ables, q and I. The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing out of and
into the capacitor plates. This current is equal to the time rate of change of the
charge on the capacitor plates. Thus, we substitute into Equation 28.11
and rearrange the equation:

To find an expression for q , we first combine the terms on the right-hand side:
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Figure 28.16 (a) A capacitor in series with a resistor, switch, and battery. (b) Circuit diagram
representing this system at time before the switch is closed. (c) Circuit diagram at time

after the switch has been closed.t $ 0,
t % 0,
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difference across the resistor. We have used the sign conventions discussed earlier
for the signs on ! and IR . For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represents a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and I are instantaneous values that depend on time (as opposed to steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit I0 is a maximum and is equal to

(current at (28.12)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q ,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting

into Equation 28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge
and current, we must solve Equation 28.11—a single equation containing two vari-
ables, q and I. The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing out of and
into the capacitor plates. This current is equal to the time rate of change of the
charge on the capacitor plates. Thus, we substitute into Equation 28.11
and rearrange the equation:

To find an expression for q , we first combine the terms on the right-hand side:
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paydaları eşitledik
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Now we multiply by dt and divide by q ! C" to obtain

Integrating this expression, using the fact that at , we obtain

From the definition of the natural logarithm, we can write this expression as

(28.14)

where e is the base of the natural logarithm and we have made the substitution
from Equation 28.13.

We can find an expression for the charging current by differentiating Equa-
tion 28.14 with respect to time. Using we find that

(28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure
28.17. Note that the charge is zero at and approaches the maximum value
C" as t : #. The current has its maximum value at and decays ex-
ponentially to zero as t : #. The quantity RC , which appears in the exponents of
Equations 28.14 and 28.15, is called the time constant $ of the circuit. It repre-
sents the time it takes the current to decrease to 1/e of its initial value; that is, in a
time $, In a time 2$, and so forth. Like-
wise, in a time $, the charge increases from zero to 

The following dimensional analysis shows that $ has the units of time:

[$] % [RC] % ! &V
I
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Q
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Figure 28.17 (a) Plot of capacitor charge versus time for the circuit shown in Figure 28.16. Af-
ter a time interval equal to one time constant $ has passed, the charge is 63.2% of the maximum
value C". The charge approaches its maximum value as t approaches infinity. (b) Plot of current
versus time for the circuit shown in Figure 28.16. The current has its maximum value 
at and decays to zero exponentially as t approaches infinity. After a time interval equal to
one time constant $ has passed, the current is 36.8% of its initial value.

t % 0
I 0 % "/R

t=0 da q=0 olduğunu biliyoruz. Bu durumda  integral alalim.
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Now we multiply by dt and divide by q ! C" to obtain

Integrating this expression, using the fact that at , we obtain

From the definition of the natural logarithm, we can write this expression as

(28.14)

where e is the base of the natural logarithm and we have made the substitution
from Equation 28.13.

We can find an expression for the charging current by differentiating Equa-
tion 28.14 with respect to time. Using we find that

(28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure
28.17. Note that the charge is zero at and approaches the maximum value
C" as t : #. The current has its maximum value at and decays ex-
ponentially to zero as t : #. The quantity RC , which appears in the exponents of
Equations 28.14 and 28.15, is called the time constant $ of the circuit. It repre-
sents the time it takes the current to decrease to 1/e of its initial value; that is, in a
time $, In a time 2$, and so forth. Like-
wise, in a time $, the charge increases from zero to 

The following dimensional analysis shows that $ has the units of time:
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ter a time interval equal to one time constant $ has passed, the charge is 63.2% of the maximum
value C". The charge approaches its maximum value as t approaches infinity. (b) Plot of current
versus time for the circuit shown in Figure 28.16. The current has its maximum value 
at and decays to zero exponentially as t approaches infinity. After a time interval equal to
one time constant $ has passed, the current is 36.8% of its initial value.
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Now we multiply by dt and divide by q ! C" to obtain

Integrating this expression, using the fact that at , we obtain

From the definition of the natural logarithm, we can write this expression as

(28.14)

where e is the base of the natural logarithm and we have made the substitution
from Equation 28.13.

We can find an expression for the charging current by differentiating Equa-
tion 28.14 with respect to time. Using we find that

(28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure
28.17. Note that the charge is zero at and approaches the maximum value
C" as t : #. The current has its maximum value at and decays ex-
ponentially to zero as t : #. The quantity RC , which appears in the exponents of
Equations 28.14 and 28.15, is called the time constant $ of the circuit. It repre-
sents the time it takes the current to decrease to 1/e of its initial value; that is, in a
time $, In a time 2$, and so forth. Like-
wise, in a time $, the charge increases from zero to 

The following dimensional analysis shows that $ has the units of time:
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Figure 28.17 (a) Plot of capacitor charge versus time for the circuit shown in Figure 28.16. Af-
ter a time interval equal to one time constant $ has passed, the charge is 63.2% of the maximum
value C". The charge approaches its maximum value as t approaches infinity. (b) Plot of current
versus time for the circuit shown in Figure 28.16. The current has its maximum value 
at and decays to zero exponentially as t approaches infinity. After a time interval equal to
one time constant $ has passed, the current is 36.8% of its initial value.
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Now we multiply by dt and divide by q ! C" to obtain

Integrating this expression, using the fact that at , we obtain

From the definition of the natural logarithm, we can write this expression as

(28.14)

where e is the base of the natural logarithm and we have made the substitution
from Equation 28.13.

We can find an expression for the charging current by differentiating Equa-
tion 28.14 with respect to time. Using we find that

(28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure
28.17. Note that the charge is zero at and approaches the maximum value
C" as t : #. The current has its maximum value at and decays ex-
ponentially to zero as t : #. The quantity RC , which appears in the exponents of
Equations 28.14 and 28.15, is called the time constant $ of the circuit. It repre-
sents the time it takes the current to decrease to 1/e of its initial value; that is, in a
time $, In a time 2$, and so forth. Like-
wise, in a time $, the charge increases from zero to 

The following dimensional analysis shows that $ has the units of time:
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Figure 28.17 (a) Plot of capacitor charge versus time for the circuit shown in Figure 28.16. Af-
ter a time interval equal to one time constant $ has passed, the charge is 63.2% of the maximum
value C". The charge approaches its maximum value as t approaches infinity. (b) Plot of current
versus time for the circuit shown in Figure 28.16. The current has its maximum value 
at and decays to zero exponentially as t approaches infinity. After a time interval equal to
one time constant $ has passed, the current is 36.8% of its initial value.
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Now we multiply by dt and divide by q ! C" to obtain

Integrating this expression, using the fact that at , we obtain

From the definition of the natural logarithm, we can write this expression as

(28.14)

where e is the base of the natural logarithm and we have made the substitution
from Equation 28.13.

We can find an expression for the charging current by differentiating Equa-
tion 28.14 with respect to time. Using we find that

(28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure
28.17. Note that the charge is zero at and approaches the maximum value
C" as t : #. The current has its maximum value at and decays ex-
ponentially to zero as t : #. The quantity RC , which appears in the exponents of
Equations 28.14 and 28.15, is called the time constant $ of the circuit. It repre-
sents the time it takes the current to decrease to 1/e of its initial value; that is, in a
time $, In a time 2$, and so forth. Like-
wise, in a time $, the charge increases from zero to 

The following dimensional analysis shows that $ has the units of time:
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Figure 28.17 (a) Plot of capacitor charge versus time for the circuit shown in Figure 28.16. Af-
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value C". The charge approaches its maximum value as t approaches infinity. (b) Plot of current
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Now we multiply by dt and divide by q ! C" to obtain

Integrating this expression, using the fact that at , we obtain

From the definition of the natural logarithm, we can write this expression as

(28.14)

where e is the base of the natural logarithm and we have made the substitution
from Equation 28.13.
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tion 28.14 with respect to time. Using we find that

(28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure
28.17. Note that the charge is zero at and approaches the maximum value
C" as t : #. The current has its maximum value at and decays ex-
ponentially to zero as t : #. The quantity RC , which appears in the exponents of
Equations 28.14 and 28.15, is called the time constant $ of the circuit. It repre-
sents the time it takes the current to decrease to 1/e of its initial value; that is, in a
time $, In a time 2$, and so forth. Like-
wise, in a time $, the charge increases from zero to 

The following dimensional analysis shows that $ has the units of time:

[$] % [RC] % ! &V
I

'
Q
&V " % ! Q

Q /&t " % [&t] % T

C" (1 ! e!1) % 0.632C".
I % e!2I0 % 0.135I0 ,I % e!1I0 % 0.368I0 .

t % 0I0 % "/R
t % 0

I(t ) %
"
R

 e!t /RC

I % dq /dt,

C" % Q

q(t ) % C" (1 ! e!t/RC) % Q(1 ! e!t /RC )

ln# q ! C"
!C" $ % !

t
RC

 

 %q

0
 

dq
q ! C" % !

1
RC

 %t

0
 dt

t % 0q % 0

dq
q ! C" % !

1
RC

 dt

Charge versus time for a capacitor
being charged

Current versus time for a charging
capacitor

q

=RC

τ t

C

0.632

(a)

I

τ t

0.368I0

(b)

I0 I0 = R

ε

Cε τ

ε

Figure 28.17 (a) Plot of capacitor charge versus time for the circuit shown in Figure 28.16. Af-
ter a time interval equal to one time constant $ has passed, the charge is 63.2% of the maximum
value C". The charge approaches its maximum value as t approaches infinity. (b) Plot of current
versus time for the circuit shown in Figure 28.16. The current has its maximum value 
at and decays to zero exponentially as t approaches infinity. After a time interval equal to
one time constant $ has passed, the current is 36.8% of its initial value.

t % 0
I 0 % "/R

884 C H A P T E R  2 8 Direct Current Circuits

Now we multiply by dt and divide by q ! C" to obtain

Integrating this expression, using the fact that at , we obtain

From the definition of the natural logarithm, we can write this expression as

(28.14)

where e is the base of the natural logarithm and we have made the substitution
from Equation 28.13.

We can find an expression for the charging current by differentiating Equa-
tion 28.14 with respect to time. Using we find that

(28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure
28.17. Note that the charge is zero at and approaches the maximum value
C" as t : #. The current has its maximum value at and decays ex-
ponentially to zero as t : #. The quantity RC , which appears in the exponents of
Equations 28.14 and 28.15, is called the time constant $ of the circuit. It repre-
sents the time it takes the current to decrease to 1/e of its initial value; that is, in a
time $, In a time 2$, and so forth. Like-
wise, in a time $, the charge increases from zero to 

The following dimensional analysis shows that $ has the units of time:

[$] % [RC] % ! &V
I

'
Q
&V " % ! Q

Q /&t " % [&t] % T

C" (1 ! e!1) % 0.632C".
I % e!2I0 % 0.135I0 ,I % e!1I0 % 0.368I0 .

t % 0I0 % "/R
t % 0

I(t ) %
"
R

 e!t /RC

I % dq /dt,

C" % Q

q(t ) % C" (1 ! e!t/RC) % Q(1 ! e!t /RC )

ln# q ! C"
!C" $ % !

t
RC

 

 %q

0
 

dq
q ! C" % !

1
RC

 %t

0
 dt

t % 0q % 0

dq
q ! C" % !

1
RC

 dt

Charge versus time for a capacitor
being charged

Current versus time for a charging
capacitor

q

=RC

τ t

C

0.632

(a)

I

τ t

0.368I0

(b)

I0 I0 = R

ε

Cε τ

ε

Figure 28.17 (a) Plot of capacitor charge versus time for the circuit shown in Figure 28.16. Af-
ter a time interval equal to one time constant $ has passed, the charge is 63.2% of the maximum
value C". The charge approaches its maximum value as t approaches infinity. (b) Plot of current
versus time for the circuit shown in Figure 28.16. The current has its maximum value 
at and decays to zero exponentially as t approaches infinity. After a time interval equal to
one time constant $ has passed, the current is 36.8% of its initial value.

t % 0
I 0 % "/R

884 C H A P T E R  2 8 Direct Current Circuits

Now we multiply by dt and divide by q ! C" to obtain

Integrating this expression, using the fact that at , we obtain

From the definition of the natural logarithm, we can write this expression as

(28.14)

where e is the base of the natural logarithm and we have made the substitution
from Equation 28.13.

We can find an expression for the charging current by differentiating Equa-
tion 28.14 with respect to time. Using we find that

(28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure
28.17. Note that the charge is zero at and approaches the maximum value
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ter a time interval equal to one time constant $ has passed, the charge is 63.2% of the maximum
value C". The charge approaches its maximum value as t approaches infinity. (b) Plot of current
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ter a time interval equal to one time constant $ has passed, the charge is 63.2% of the maximum
value C". The charge approaches its maximum value as t approaches infinity. (b) Plot of current
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at and decays to zero exponentially as t approaches infinity. After a time interval equal to
one time constant $ has passed, the current is 36.8% of its initial value.
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Akımın başlangıç değerinin 1/e değerine düşmesi içın geçen zamandır.
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Devre çalışmaya başladı, 𝜏 zaman sonra; 

yükün zamana göre grafiğini incleyelim. 𝜏 zaman  sabiti kadar sonra yük 

C𝓔 maksimum değerinin %63.2’sine ulaşır. 

Akimin zamana göre grafiğini incleyelim. t=0 da akim I=𝓔/R dir ve  𝜏 zaman  
sabiti kadar sonra akım maksimum değerinin %36.8’ine düşer.
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Bu zamana kadar oluşturduğumuz devrede kondansatörü doldurduk ve  

artik çeşitli görevlerde kullanılabilir hale geldi. Şimdi kondansatörü boşaltalım
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28.4 RC Circuits 885

Because has units of time, the combination t /RC is dimensionless, as it
must be in order to be an exponent of e in Equations 28.14 and 28.15.

The energy output of the battery as the capacitor is fully charged is
After the capacitor is fully charged, the energy stored in the capacitor

is which is just half the energy output of the battery. It is left as a
problem (Problem 60) to show that the remaining half of the energy supplied by
the battery appears as internal energy in the resistor.

Discharging a Capacitor

Now let us consider the circuit shown in Figure 28.18, which consists of a capaci-
tor carrying an initial charge Q , a resistor, and a switch. The initial charge Q is
not the same as the maximum charge Q in the previous discussion, unless the dis-
charge occurs after the capacitor is fully charged (as described earlier). When the
switch is open, a potential difference Q /C exists across the capacitor and there is
zero potential difference across the resistor because If the switch is closed
at the capacitor begins to discharge through the resistor. At some time t
during the discharge, the current in the circuit is I and the charge on the capaci-
tor is q (Fig. 28.18b). The circuit in Figure 28.18 is the same as the circuit in Fig-
ure 28.16 except for the absence of the battery. Thus, we eliminate the emf !
from Equation 28.11 to obtain the appropriate loop equation for the circuit in
Figure 28.18:

(28.16)

When we substitute into this expression, it becomes

Integrating this expression, using the fact that at gives

(28.17)

Differentiating this expression with respect to time gives the instantaneous current
as a function of time:

(28.18)

where is the initial current. The negative sign indicates that the cur-
rent direction now that the capacitor is discharging is opposite the current direc-
tion when the capacitor was being charged. (Compare the current directions in
Figs. 28.16c and 28.18b.) We see that both the charge on the capacitor and the
current decay exponentially at a rate characterized by the time constant " # RC .
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Figure 28.18 (a) A charged ca-
pacitor connected to a resistor and
a switch, which is open at 
(b) After the switch is closed, a cur-
rent that decreases in magnitude
with time is set up in the direction
shown, and the charge on the ca-
pacitor decreases exponentially
with time.

t % 0.

28.4 RC Circuits 883

difference across the resistor. We have used the sign conventions discussed earlier
for the signs on ! and IR . For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represents a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and I are instantaneous values that depend on time (as opposed to steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit I0 is a maximum and is equal to

(current at (28.12)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q ,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting

into Equation 28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge
and current, we must solve Equation 28.11—a single equation containing two vari-
ables, q and I. The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing out of and
into the capacitor plates. This current is equal to the time rate of change of the
charge on the capacitor plates. Thus, we substitute into Equation 28.11
and rearrange the equation:

To find an expression for q , we first combine the terms on the right-hand side:
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Figure 28.16 (a) A capacitor in series with a resistor, switch, and battery. (b) Circuit diagram
representing this system at time before the switch is closed. (c) Circuit diagram at time

after the switch has been closed.t $ 0,
t % 0,

Kondansatör dolarken Kondansatör boşalırken
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must be in order to be an exponent of e in Equations 28.14 and 28.15.

The energy output of the battery as the capacitor is fully charged is
After the capacitor is fully charged, the energy stored in the capacitor

is which is just half the energy output of the battery. It is left as a
problem (Problem 60) to show that the remaining half of the energy supplied by
the battery appears as internal energy in the resistor.

Discharging a Capacitor

Now let us consider the circuit shown in Figure 28.18, which consists of a capaci-
tor carrying an initial charge Q , a resistor, and a switch. The initial charge Q is
not the same as the maximum charge Q in the previous discussion, unless the dis-
charge occurs after the capacitor is fully charged (as described earlier). When the
switch is open, a potential difference Q /C exists across the capacitor and there is
zero potential difference across the resistor because If the switch is closed
at the capacitor begins to discharge through the resistor. At some time t
during the discharge, the current in the circuit is I and the charge on the capaci-
tor is q (Fig. 28.18b). The circuit in Figure 28.18 is the same as the circuit in Fig-
ure 28.16 except for the absence of the battery. Thus, we eliminate the emf !
from Equation 28.11 to obtain the appropriate loop equation for the circuit in
Figure 28.18:

(28.16)

When we substitute into this expression, it becomes

Integrating this expression, using the fact that at gives
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Differentiating this expression with respect to time gives the instantaneous current
as a function of time:
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where is the initial current. The negative sign indicates that the cur-
rent direction now that the capacitor is discharging is opposite the current direc-
tion when the capacitor was being charged. (Compare the current directions in
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Bu devreye Kirchhoff yasasini uygulayalim.(gerilim 
yasasi)
Kapalı bir devrede  devre elemanlarının uçları  
arasındaki potansiyel farkın toplamı uretecin  
potansiyelini verir. 

Kapalı bir devrede  tum devre elemanlarının uçları  
arasındaki potansiyel farkın toplamı sifirdir.
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charge occurs after the capacitor is fully charged (as described earlier). When the
switch is open, a potential difference Q /C exists across the capacitor and there is
zero potential difference across the resistor because If the switch is closed
at the capacitor begins to discharge through the resistor. At some time t
during the discharge, the current in the circuit is I and the charge on the capaci-
tor is q (Fig. 28.18b). The circuit in Figure 28.18 is the same as the circuit in Fig-
ure 28.16 except for the absence of the battery. Thus, we eliminate the emf !
from Equation 28.11 to obtain the appropriate loop equation for the circuit in
Figure 28.18:
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When we substitute into this expression, it becomes

Integrating this expression, using the fact that at gives
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tor carrying an initial charge Q , a resistor, and a switch. The initial charge Q is
not the same as the maximum charge Q in the previous discussion, unless the dis-
charge occurs after the capacitor is fully charged (as described earlier). When the
switch is open, a potential difference Q /C exists across the capacitor and there is
zero potential difference across the resistor because If the switch is closed
at the capacitor begins to discharge through the resistor. At some time t
during the discharge, the current in the circuit is I and the charge on the capaci-
tor is q (Fig. 28.18b). The circuit in Figure 28.18 is the same as the circuit in Fig-
ure 28.16 except for the absence of the battery. Thus, we eliminate the emf !
from Equation 28.11 to obtain the appropriate loop equation for the circuit in
Figure 28.18:
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When we substitute into this expression, it becomes

Integrating this expression, using the fact that at gives
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as a function of time:
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Now we multiply by dt and divide by q ! C" to obtain

Integrating this expression, using the fact that at , we obtain

From the definition of the natural logarithm, we can write this expression as

(28.14)

where e is the base of the natural logarithm and we have made the substitution
from Equation 28.13.

We can find an expression for the charging current by differentiating Equa-
tion 28.14 with respect to time. Using we find that

(28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure
28.17. Note that the charge is zero at and approaches the maximum value
C" as t : #. The current has its maximum value at and decays ex-
ponentially to zero as t : #. The quantity RC , which appears in the exponents of
Equations 28.14 and 28.15, is called the time constant $ of the circuit. It repre-
sents the time it takes the current to decrease to 1/e of its initial value; that is, in a
time $, In a time 2$, and so forth. Like-
wise, in a time $, the charge increases from zero to 

The following dimensional analysis shows that $ has the units of time:
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Figure 28.17 (a) Plot of capacitor charge versus time for the circuit shown in Figure 28.16. Af-
ter a time interval equal to one time constant $ has passed, the charge is 63.2% of the maximum
value C". The charge approaches its maximum value as t approaches infinity. (b) Plot of current
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one time constant $ has passed, the current is 36.8% of its initial value.
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Now we multiply by dt and divide by q ! C" to obtain

Integrating this expression, using the fact that at , we obtain

From the definition of the natural logarithm, we can write this expression as

(28.14)

where e is the base of the natural logarithm and we have made the substitution
from Equation 28.13.

We can find an expression for the charging current by differentiating Equa-
tion 28.14 with respect to time. Using we find that
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Plots of capacitor charge and circuit current versus time are shown in Figure
28.17. Note that the charge is zero at and approaches the maximum value
C" as t : #. The current has its maximum value at and decays ex-
ponentially to zero as t : #. The quantity RC , which appears in the exponents of
Equations 28.14 and 28.15, is called the time constant $ of the circuit. It repre-
sents the time it takes the current to decrease to 1/e of its initial value; that is, in a
time $, In a time 2$, and so forth. Like-
wise, in a time $, the charge increases from zero to 

The following dimensional analysis shows that $ has the units of time:
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problem (Problem 60) to show that the remaining half of the energy supplied by
the battery appears as internal energy in the resistor.
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Now let us consider the circuit shown in Figure 28.18, which consists of a capaci-
tor carrying an initial charge Q , a resistor, and a switch. The initial charge Q is
not the same as the maximum charge Q in the previous discussion, unless the dis-
charge occurs after the capacitor is fully charged (as described earlier). When the
switch is open, a potential difference Q /C exists across the capacitor and there is
zero potential difference across the resistor because If the switch is closed
at the capacitor begins to discharge through the resistor. At some time t
during the discharge, the current in the circuit is I and the charge on the capaci-
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ure 28.16 except for the absence of the battery. Thus, we eliminate the emf !
from Equation 28.11 to obtain the appropriate loop equation for the circuit in
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Integrating this expression, using the fact that at gives
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as a function of time:
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where is the initial current. The negative sign indicates that the cur-
rent direction now that the capacitor is discharging is opposite the current direc-
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Figs. 28.16c and 28.18b.) We see that both the charge on the capacitor and the
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Now we multiply by dt and divide by q ! C" to obtain
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where e is the base of the natural logarithm and we have made the substitution
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28.17. Note that the charge is zero at and approaches the maximum value
C" as t : #. The current has its maximum value at and decays ex-
ponentially to zero as t : #. The quantity RC , which appears in the exponents of
Equations 28.14 and 28.15, is called the time constant $ of the circuit. It repre-
sents the time it takes the current to decrease to 1/e of its initial value; that is, in a
time $, In a time 2$, and so forth. Like-
wise, in a time $, the charge increases from zero to 
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28.4 RC Circuits 885

Because has units of time, the combination t /RC is dimensionless, as it
must be in order to be an exponent of e in Equations 28.14 and 28.15.

The energy output of the battery as the capacitor is fully charged is
After the capacitor is fully charged, the energy stored in the capacitor

is which is just half the energy output of the battery. It is left as a
problem (Problem 60) to show that the remaining half of the energy supplied by
the battery appears as internal energy in the resistor.

Discharging a Capacitor

Now let us consider the circuit shown in Figure 28.18, which consists of a capaci-
tor carrying an initial charge Q , a resistor, and a switch. The initial charge Q is
not the same as the maximum charge Q in the previous discussion, unless the dis-
charge occurs after the capacitor is fully charged (as described earlier). When the
switch is open, a potential difference Q /C exists across the capacitor and there is
zero potential difference across the resistor because If the switch is closed
at the capacitor begins to discharge through the resistor. At some time t
during the discharge, the current in the circuit is I and the charge on the capaci-
tor is q (Fig. 28.18b). The circuit in Figure 28.18 is the same as the circuit in Fig-
ure 28.16 except for the absence of the battery. Thus, we eliminate the emf !
from Equation 28.11 to obtain the appropriate loop equation for the circuit in
Figure 28.18:

(28.16)

When we substitute into this expression, it becomes

Integrating this expression, using the fact that at gives

(28.17)

Differentiating this expression with respect to time gives the instantaneous current
as a function of time:

(28.18)

where is the initial current. The negative sign indicates that the cur-
rent direction now that the capacitor is discharging is opposite the current direc-
tion when the capacitor was being charged. (Compare the current directions in
Figs. 28.16c and 28.18b.) We see that both the charge on the capacitor and the
current decay exponentially at a rate characterized by the time constant " # RC .
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ELEKTRİK ÖLÇEN AYGITLAR
Devrede herşeyin yolunda gidip gitmediğini test etmemiz gerekir bazen. Bu nedenle 

çeşitli aygıtlardan yararlanırız. Bunların en başında Ampermetre ve Voltmetre 
bulunmaktadır.

ries with other elements in the circuit, as shown in Figure 28.21. When using an
ammeter to measure direct currents, you must be sure to connect it so that current
enters the instrument at the positive terminal and exits at the negative terminal.

Ideally, an ammeter should have zero resistance so that the current be-
ing measured is not altered. In the circuit shown in Figure 28.21, this condition
requires that the resistance of the ammeter be much less than Because
any ammeter always has some internal resistance, the presence of the ammeter in
the circuit slightly reduces the current from the value it would have in the meter’s
absence.

The Voltmeter

A device that measures potential difference is called a voltmeter. The potential
difference between any two points in a circuit can be measured by attaching the
terminals of the voltmeter between these points without breaking the circuit, as
shown in Figure 28.22. The potential difference across resistor R2 is measured by
connecting the voltmeter in parallel with R2 . Again, it is necessary to observe the
polarity of the instrument. The positive terminal of the voltmeter must be con-
nected to the end of the resistor that is at the higher potential, and the negative
terminal to the end of the resistor at the lower potential.

An ideal voltmeter has infinite resistance so that no current passes
through it. In Figure 28.22, this condition requires that the voltmeter have a resis-
tance much greater than R2 . In practice, if this condition is not met, corrections
should be made for the known resistance of the voltmeter.

The Galvanometer

The galvanometer is the main component in analog ammeters and voltmeters.
Figure 28.23a illustrates the essential features of a common type called the 
D’Arsonval galvanometer. It consists of a coil of wire mounted so that it is free to ro-
tate on a pivot in a magnetic field provided by a permanent magnet. The basic op-
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Figure 28.23 (a) The principal components of a D’Arsonval galvanometer. When the coil situ-
ated in a magnetic field carries a current, the magnetic torque causes the coil to twist. The angle
through which the coil rotates is proportional to the current in the coil because of the counter-
acting torque of the spring. (b) A large-scale model of a galvanometer movement. Why does the
coil rotate about the vertical axis after the switch is closed?

(b)

ries with other elements in the circuit, as shown in Figure 28.21. When using an
ammeter to measure direct currents, you must be sure to connect it so that current
enters the instrument at the positive terminal and exits at the negative terminal.

Ideally, an ammeter should have zero resistance so that the current be-
ing measured is not altered. In the circuit shown in Figure 28.21, this condition
requires that the resistance of the ammeter be much less than Because
any ammeter always has some internal resistance, the presence of the ammeter in
the circuit slightly reduces the current from the value it would have in the meter’s
absence.

The Voltmeter

A device that measures potential difference is called a voltmeter. The potential
difference between any two points in a circuit can be measured by attaching the
terminals of the voltmeter between these points without breaking the circuit, as
shown in Figure 28.22. The potential difference across resistor R2 is measured by
connecting the voltmeter in parallel with R2 . Again, it is necessary to observe the
polarity of the instrument. The positive terminal of the voltmeter must be con-
nected to the end of the resistor that is at the higher potential, and the negative
terminal to the end of the resistor at the lower potential.

An ideal voltmeter has infinite resistance so that no current passes
through it. In Figure 28.22, this condition requires that the voltmeter have a resis-
tance much greater than R2 . In practice, if this condition is not met, corrections
should be made for the known resistance of the voltmeter.

The Galvanometer

The galvanometer is the main component in analog ammeters and voltmeters.
Figure 28.23a illustrates the essential features of a common type called the 
D’Arsonval galvanometer. It consists of a coil of wire mounted so that it is free to ro-
tate on a pivot in a magnetic field provided by a permanent magnet. The basic op-
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Figure 28.23 (a) The principal components of a D’Arsonval galvanometer. When the coil situ-
ated in a magnetic field carries a current, the magnetic torque causes the coil to twist. The angle
through which the coil rotates is proportional to the current in the coil because of the counter-
acting torque of the spring. (b) A large-scale model of a galvanometer movement. Why does the
coil rotate about the vertical axis after the switch is closed?

(b)

Potansiyel farkı  ölçen aygıta Voltmetre denilmektedir. 
Devreye paralel bağlanır. Ideal bir voltmetre sonsuz 
dirence sahiptir.

Akım ölçen aygıta Ampetre denilmektedir. Devreye 

seri bağlanır. Ideal bir ampermetre sıfır dirence 
sahiptir.

21Dr. Çağın KAMIŞCIOĞLU, Fizik II, Doğru Akım Devreleri-2



KAYNAKLAR
1. http://www.seckin.com.tr/kitap/413951887 (“Üniversiteler için Fizik”, B. Karaoğlu, Seçkin Yayıncılık, 
2012).  

2.Fen ve Mühendislik için Fizik Cilt-2, R.A.Serway,R.J.Beichner,5.Baskıdan çeviri, (ÇE) K. Çolakoğlu, 
Palme Yayıncılık. 

3. Üniversite Fiziği Cilt-I, H.D. Young ve R.A.Freedman, (Çeviri Editörü: Prof. Dr. Hilmi Ünlü) 12. Baskı, 
Pearson Education Yayıncılık 2009, Ankara. 

4. https://www.youtube.com/user/crashcourse 

22Dr. Çağın KAMIŞCIOĞLU, Fizik II, Doğru Akım Devreleri-2


