(FZM 114) FíZíK -II Dr. Çağın KAMIŞCIOĞLU

İÇERİK

+ MANYETIK ALAN
+ OERSTED DENEYI
+ SAG EL KURALI
+ AKIM TASIYAN BIR TELIN MANYETIK ALANDA HAREKETI
+ ÖRNEK

MANYETİK ALAN

Herhangi bir duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alan sarmaktadır. Herhangi bir hareketli elektrik yükünün çevresindeki uzay bölgesi elektrik alana ek olarak bir de manyetik alan içerir. Herhangi bir manyetik maddeyi de saran bir manyetik alan vardır.

Tarihsel olarak, bir manyetik alanı temsil etmek için B harfi kullanılmaktadır.

MANYETİK KUVVET

Bu hesaplama arkadaşlara vektörel bir özellik göstermektedir.

OERSTED DENEYİ

Elektrik ve manyetizma arasındaki ilişki, 1819 da Danimarkalı bilimadamı Hans Christian Oersted'in bir gösteri deneyi sırasında üzerinden elektrik akum_{m} geçen bir telin yakınında duran bir pusula iğnesini saptırdığını bulması ile kesfedildi. ${ }^{2}$ Bundan kısa bir süre sonra, André Amperè (1775-1836) akım-taşıpan bir elektriksel iletkenin diğerine uyguladığ 1 manyetik kuvveti hesaplamak In gerekli nicel yasaları elde etti. Aynı zamanda tüm manyetik olayların mo-

AKIM TAŞIYAN BIR ILETKENE ETKIYEN MANYETIK KUVVET

Tek yüklü bir parçacık, bir manyetik alandan geçerken bir kuvvet etkisinde kaliyorsa üzerinden akım geçen bir tele de manyetik alan içinde kuvvet etkimesi süpriz değildir. Biliyoruz ki akım zaten çok sayıda yüklü parçacıktan oluşmanktadır. Bu yüzden her bir yüklü parçacığa bir kuvvet uygulanacak ve bu kuvvetlerin toplamı tele etkiyen net kuvveti verecektir.

Dr. Çağın KAMIȘC(1)OĞLU, Fizik II, Manyetik Alanlar-II

(c)

(d)

SAĞ EL KURALI

Fleming's left-hand rule

AKIM TAŞIYAN BIR ILETKENE ETKIYEN MANYETIK KUVVET

Bu tartışmay, Şekil 29.7 deki gibi düzgün bir B $d \imath s$ manyetik alanı içinde Ikadar akım taşıyan, kesit alanı A ve uzunluğu L olan düz bir tel parçası düşünerek nicel hale getirelim. Bir \mathbf{v}_{s} sürüklenme hızı ile hareket eden q yüküne etkiyen manyetik kuvvet $\boldsymbol{q}_{\mathbf{s}} \times \mathbf{B}$ bağıntısıyla verilir. Tele etkiyen toplam kuvveii bulmak için, bir yüke etkiyen $q_{s} \times \mathbb{B}$ kuwveti, tel parçasında bulunan yük satisı ile çarpılır. Parçanun hacmi $A L$ olduğu için içindeki yük sayısı $n A L$ dir. Burada n birim hacimdeki yük sayısıdır. Sonuç olarak uzunluğu L olan tele etkiren toplam manyetik kuvvet

$$
\mathbf{F}_{B}=\left(q \mathbf{v}_{d} \times \mathbf{B}\right) n A L
$$

AKIM TAŞIYAN BIR ILETKENE ETKIYEN MANYETIK KUVVET

$$
\mathbf{F}_{B}=I \mathbf{L} \times \mathbf{B}
$$

B düzgün manyetik
alanında doğrusal
tel parçasina etki
eden kuvvet (vektör)

Telin

Akım
(sayisal)
uzunluğu
akim yönünde (vektör)

Bu hesaplama arkadaşlara vektörel bir özellik göstermektedir.

AKIM TAŞIYAN BIR ILETKENE ETKIYEN MANYETIK KUVVET

Şimdi, Şekil 29.8 deki gibi bir dış manyetik alan içerisinde düzgün kesitli fakat keyfi biçimli bir tel gözönüne alalım. Bir B alanı bulunduğu zaman çok küçük bir ds parçasına etkiyen manyetik kuvvet Eşitlik 29.3 gereği

$$
\begin{equation*}
d \mathbf{F}_{B}=I d \mathbf{s} \times \mathbf{B} \tag{29,4}
\end{equation*}
$$

bağıntısıyla verilir. Burada $d \mathbf{F}_{B}$, Şekil 29.8 de varsayılan yönler için kağıt düzelemine dik ve dişa doğru yönelmiştir. Eşitlik 29.4 B nin değişik bir tanımı ola. rak düşünebilir. Yani, B alanı, bir akım elamanına etkiyen ölçülebilir bir kuvvet cinsinden tanımlanabilir. Buradaki kuvvet, \mathbf{B} akım elemanına dik olduğunda maksimum, \mathbf{B} akım elemanına paralel olduğunda ise sıfırdır.

AKIM TAŞIYAN BIR ILETKENE ETKIYEN MANYETIK KUVVET

Şekil 29.8 de gösterilen tele etkiyen toplam \mathbf{F}_{B} kuvvetini elde etmek için, Eşitlik 29.4'ü telin uzunluğu boyunca integre ederiz:

$$
\begin{equation*}
\mathbf{F}_{B}=I \int_{a}^{b} d \mathbf{s} \times \mathbf{B} \tag{29.5}
\end{equation*}
$$

Bu ifadede, a ve b telin uç noktalarını temsil etmektedir. Bu integral alınırken her noktada manyetik alanın büyüklüğü ve $d s$ vektörüne göre yönü (yani akım elemanına göre yönelimi) değişebilir.

Şimdi 29.5 Eşitliğinin uygulanmasını içeren iki özel durumu ele alahm. Her iki durumda da dış manyetik alanın büyüklüğü ve yönü sabit kabul edilmektedir.

AKIM TAŞIYAN BIR ILETKENE ETKIYEN MANYETIK KUVVET

Durum 1 Şekil 29.9a daki gibi düzgün bir B dış manyetik alanı içerisinde bulunan, I akımı taşıyan eğrisel bir tel gözönüne alalım. Alan düzgün (yani, B iletkenin bulunduğu bölgenin tamamında aynı değere sahip) varsayıldığı ic̣in, 29.5 Eşitliğinde \mathbf{B}, integralin dışına alınabilir ve

$$
\begin{equation*}
\mathbf{F}_{B}=I\left(\int_{a}^{b} d \mathbf{s}\right) \times \mathbf{B} \tag{29.6}
\end{equation*}
$$

elde ederiz. Fakat $\int_{a}^{b} d s$, niceliği a dan b ye kadar olan tüm yerdeğişim elemantainı vektörel toplamını temsil eder. Birçok vektörün toplanması ile ilgili kual gereği toplam, a dan b ye doğru yönelen \mathbf{L}^{\prime} vektörüne eşittir. Bu nedenle, Esitil 29.6

$$
\begin{equation*}
\mathbf{F}_{B}=I \mathbf{L}^{\prime} \times \mathbf{B} \tag{29.7}
\end{equation*}
$$

bicimine indirgenir.
(a)

AKIM TAŞIYAN BIR ILETKENE ETKIYEN MANYETIK KUVVET

Durum 2 I akımı taşıyan keyfi biçimli kapalı bir ilmek, Şekil 29.9b deki gibi dǐzgün bir \mathbf{B} manyetik alanına yerleştirilmiş olsun. İlmeğe etkiyen kuvveti yine Esitlik 29.6 biçiminde ifade edebiliriz. Fakat bu sefer uzunluk elemanları is lerin vektörel toplamı kapalı ilmeğin tamamı boyunca yapılmalıdır:

$$
\mathbf{F}_{B}=I\left(\oint_{d \mathbf{s}}\right) \times \mathbf{B}
$$

azunluk elemanı vektörlerinin toplamı kapalı bir ilmek oluşturduğu için vektôrel toplam sifir olmalıdır. Bu sonuç, çokgen yöntemini kullanarak vektörleiili grafiksel süreçle toplanmasına dayanır. $\oint d \mathbf{s}=0$ olduğundan, $\mathbf{F}_{B}=0$ sonucima ulaşirız. Yani,

Düzgün bir manyetik alan iccerisindeki herhangi bir kapali akım ilmegíne etkiyen net manyetik kuvet sifirdir.

ÖRNEK-1

14. Bir tel $2,4 \mathrm{~A}$ lik bir kararlı akım taşımaktadır. Telin x ekseni boyunca $0,75 \mathrm{~m}$ lik düz kısmı, $\mathbb{B}=1,6 \mathrm{kT}$ Tle verilen düzgün bir manyetik alan içerisinde bululur duğuna ve akım $+x$ yönünde geçtiğine göre, telin bu kismuna etkiyen kuvvet ne kadardır?

$$
\mathbf{F}_{B}=I \mathbf{L} \times \mathbf{B}
$$

$$
F=(2.4 A)(0.750 m) i x(1.6 T) k=(-2.88 j) N
$$

i, j, k birim vektörler -> x, y, z koordinatlari

KAYNAKLAR

1. http://www.seckin.com.tr/kitap/413951887 ("Üniversiteler için Fizik", B. Karaoğlu, Seçkin Yayıncılık, 2012).
2.Fen ve Mühendislik için Fizik Cilt-2, R.A.Serway,R.J.Beichner,5.Baskıdan çeviri, (ÇE) K. Çolakoğlu, Palme Yayıncılık.
2. Üniversite Fiziği Cilt-I, H.D. Young ve R.A.Freedman, (Çeviri Editörü: Prof. Dr. Hilmi Ünlü) 12. Baskı, Pearson Education Yayıncılık 2009, Ankara.
3. https://www.youtube.com/user/crashcourse
