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938 C H A P T E R  3 0 Sources of the Magnetic Field

n the preceding chapter, we discussed the magnetic force exerted on a charged
particle moving in a magnetic field. To complete the description of the mag-
netic interaction, this chapter deals with the origin of the magnetic field—mov-

ing charges. We begin by showing how to use the law of Biot and Savart to calcu-
late the magnetic field produced at some point in space by a small current
element. Using this formalism and the principle of superposition, we then calcu-
late the total magnetic field due to various current distributions. Next, we show
how to determine the force between two current-carrying conductors, which leads
to the definition of the ampere. We also introduce Ampère’s law, which is useful in
calculating the magnetic field of a highly symmetric configuration carrying a
steady current.

This chapter is also concerned with the complex processes that occur in mag-
netic materials. All magnetic effects in matter can be explained on the basis of
atomic magnetic moments, which arise both from the orbital motion of the elec-
trons and from an intrinsic property of the electrons known as spin.

THE BIOT – SAVART LAW
Shortly after Oersted’s discovery in 1819 that a compass needle is deflected by a
current-carrying conductor, Jean-Baptiste Biot (1774–1862) and Félix Savart
(1791–1841) performed quantitative experiments on the force exerted by an elec-
tric current on a nearby magnet. From their experimental results, Biot and Savart
arrived at a mathematical expression that gives the magnetic field at some point in
space in terms of the current that produces the field. That expression is based on
the following experimental observations for the magnetic field dB at a point P as-
sociated with a length element ds of a wire carrying a steady current I (Fig. 30.1):

• The vector dB is perpendicular both to ds (which points in the direction of the
current) and to the unit vector directed from ds to P.

• The magnitude of dB is inversely proportional to r 2, where r is the distance
from ds to P.

• The magnitude of dB is proportional to the current and to the magnitude ds of
the length element ds.

• The magnitude of dB is proportional to sin !, where ! is the angle between the
vectors ds and .r̂

r̂
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created by an electric current
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Figure 30.1 (a) The magnetic field dB at point P due to the current I through a length ele-
ment ds is given by the Biot–Savart law. The direction of the field is out of the page at P and into
the page at P". (b) The cross product points out of the page when points toward P. 
(c) The cross product points into the page when points toward P".r̂d s ! r̂

r̂d s ! r̂
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Bu özellikler Biot-Savart olarak bilinen aşagıdaki matematiksel ifade ile özetlenebilir.

30.1 The Biot – Savart Law 939

These observations are summarized in the mathematical formula known today as
the Biot–Savart law:

(30.1)

where !0 is a constant called the permeability of free space:

(30.2)

It is important to note that the field d B in Equation 30.1 is the field created by
the current in only a small length element ds of the conductor. To find the total
magnetic field B created at some point by a current of finite size, we must sum up
contributions from all current elements Ids that make up the current. That is, we
must evaluate B by integrating Equation 30.1:

(30.3)

where the integral is taken over the entire current distribution. This expression
must be handled with special care because the integrand is a cross product and
therefore a vector quantity. We shall see one case of such an integration in Exam-
ple 30.1.

Although we developed the Biot–Savart law for a current-carrying wire, it is
also valid for a current consisting of charges flowing through space, such as the
electron beam in a television set. In that case, ds represents the length of a small
segment of space in which the charges flow.

Interesting similarities exist between the Biot–Savart law for magnetism 
and Coulomb’s law for electrostatics. The current element produces a magnetic
field, whereas a point charge produces an electric field. Furthermore, the magni-
tude of the magnetic field varies as the inverse square of the distance from the 
current element, as does the electric field due to a point charge. However, the 
directions of the two fields are quite different. The electric field created by a 
point charge is radial, but the magnetic field created by a current element is per-
pendicular to both the length element ds and the unit vector , as described by
the cross product in Equation 30.1. Hence, if the conductor lies in the plane of
the page, as shown in Figure 30.1, dB points out of the page at P and into the page
at P ".

Another difference between electric and magnetic fields is related to the
source of the field. An electric field is established by an isolated electric charge.
The Biot–Savart law gives the magnetic field of an isolated current element at
some point, but such an isolated current element cannot exist the way an isolated
electric charge can. A current element must be part of an extended current distrib-
ution because we must have a complete circuit in order for charges to flow. Thus,
the Biot–Savart law is only the first step in a calculation of a magnetic field; it must
be followed by an integration over the current distribution.

In the examples that follow, it is important to recognize that the magnetic
field determined in these calculations is the field created by a current-carry-
ing conductor. This field is not to be confused with any additional fields that may
be present outside the conductor due to other sources, such as a bar magnet
placed nearby.
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Burada 𝜇0  serbest uzayın geçirgenliği denilen bir sabittir.
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Magnetic Field on the Axis of a Circular Current LoopEXAMPLE 30.3

(at x ! 0) (30.8)

which is consistent with the result of the exercise in Example
30.2.

It is also interesting to determine the behavior of the mag-
netic field far from the loop—that is, when x is much greater
than R . In this case, we can neglect the term R 2 in the de-
nominator of Equation 30.7 and obtain

(for (30.9)

Because the magnitude of the magnetic moment " of the
loop is defined as the product of current and loop area (see
Eq. 29.10)—" ! I(#R 2) for our circular loop—we can ex-
press Equation 30.9 as

(30.10)

This result is similar in form to the expression for the electric
field due to an electric dipole, (see ExampleE ! ke(2qa/y3)

B !
"0

2#
 

"
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x W R)B !
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B !
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Consider a circular wire loop of radius R located in the yz
plane and carrying a steady current I, as shown in Figure
30.5. Calculate the magnetic field at an axial point P a dis-
tance x from the center of the loop.

Solution In this situation, note that every length element
ds is perpendicular to the vector at the location of the ele-
ment. Thus, for any element, sin 90° ! ds.
Furthermore, all length elements around the loop are at the
same distance r from P, where Hence, the mag-
nitude of dB due to the current in any length element ds is

The direction of dB is perpendicular to the plane formed by
and ds, as shown in Figure 30.5. We can resolve this vector

into a component dBx along the x axis and a component dBy
perpendicular to the x axis. When the components dBy are
summed over all elements around the loop, the resultant
component is zero. That is, by symmetry the current in any
element on one side of the loop sets up a perpendicular com-
ponent of dB that cancels the perpendicular component set
up by the current through the element diametrically opposite
it. Therefore, the resultant field at P must be along the x axis and
we can find it by integrating the components 
That is, where

and we must take the integral over the entire loop. Because $,
x, and R are constants for all elements of the loop and be-
cause cos we obtain

(30.7)

where we have used the fact that (the circumfer-
ence of the loop).

To find the magnetic field at the center of the loop, we set
x ! 0 in Equation 30.7. At this special point, therefore,

ds ! 2#R"

"0IR2

2(x2 % R2)3/2Bx !
"0IR

4#(x2 % R2)3/2  "ds !

$ ! R /(x2 % R2)1/2,
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4#

 " 
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B ! Bx i,
dBx ! dB cos $.
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Because I and R are constants, we can easily integrate this ex-
pression over the curved path AC :

(30.6)

where we have used the fact that with $ measured ins ! R$

"0I
4#R

 $B !
"0I

4#R2  $ ds !
"0I

4#R2  s !

radians. The direction of B is into the page at O because
is into the page for every length element.

Exercise A circular wire loop of radius R carries a current I.
What is the magnitude of the magnetic field at its center?

Answer "0I/2R .
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Figure 30.5 Geometry for calculating the magnetic field at a
point P lying on the axis of a current loop. By symmetry, the total
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30.2 The Magnetic Force Between Two Parallel Conductors 943

(a) (b) (c)

S

N

I
S

N

Figure 30.6 (a) Magnetic field lines surrounding a current loop. (b) Magnetic field lines surrounding a current loop, displayed with iron
filings (Education Development Center, Newton, MA). (c) Magnetic field lines surrounding a bar magnet. Note the similarity between this line
pattern and that of a current loop.

23.6), where is the electric dipole moment as de-
fined in Equation 26.16.

The pattern of the magnetic field lines for a circular cur-
rent loop is shown in Figure 30.6a. For clarity, the lines are

2qa ! p drawn for only one plane—one that contains the axis of the
loop. Note that the field-line pattern is axially symmetric and
looks like the pattern around a bar magnet, shown in Figure
30.6c.
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THE MAGNETIC FORCE BETWEEN TWO
PARALLEL CONDUCTORS

In Chapter 29 we described the magnetic force that acts on a current-carrying con-
ductor placed in an external magnetic field. Because a current in a conductor sets
up its own magnetic field, it is easy to understand that two current-carrying con-
ductors exert magnetic forces on each other. As we shall see, such forces can be
used as the basis for defining the ampere and the coulomb.

Consider two long, straight, parallel wires separated by a distance a and carry-
ing currents I1 and I2 in the same direction, as illustrated in Figure 30.7. We can
determine the force exerted on one wire due to the magnetic field set up by the
other wire. Wire 2, which carries a current I2 , creates a magnetic field B2 at the lo-
cation of wire 1. The direction of B2 is perpendicular to wire 1, as shown in Figure
30.7. According to Equation 29.3, the magnetic force on a length " of wire 1 is

" Because " is perpendicular to B2 in this situation, the magnitude
of F1 is Because the magnitude of B2 is given by Equation 30.5, we see
that

(30.11)

The direction of F1 is toward wire 2 because " ! B2 is in that direction. If the field
set up at wire 2 by wire 1 is calculated, the force F2 acting on wire 2 is found to be
equal in magnitude and opposite in direction to F1 . This is what we expect be-

F1 ! I1!B2 ! I1!! "0I2

2#a " !
"0I1I2

2#a
 !

F1 ! I1!B 2 .
! B2.F1 ! I1

30.2

Figure 30.7 Two parallel wires
that each carry a steady current ex-
ert a force on each other. The field
B2 due to the current in wire 2 ex-
erts a force of magnitude

on wire 1. The force is
attractive if the currents are paral-
lel (as shown) and repulsive if the
currents are antiparallel.

F 1 ! I 1 !B2 
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Her iki tele de etkiyen kuvvetlerin büyüklükleri aynı olduğundan teller arasindaki 
manyetik kuvvetin büyüklüğünü FB ile gösterebiliriz. Bu büyüklüğü telin birim 
uzunluğuna etkiyen kuvvet cinsinden yazarsak;

In deriving Equations 30.11 and 30.12, we assumed that both wires are long
compared with their separation distance. In fact, only one wire needs to be long.
The equations accurately describe the forces exerted on each other by a long wire
and a straight parallel wire of limited length .

For and in Figure 30.7, which is true: (a) (b) or 
(c) 

A loose spiral spring is hung from the ceiling, and a large current is sent through it. Do the
coils move closer together or farther apart?

Quick Quiz 30.2

F1 ! F2 ?
F1 ! F2/3,F1 ! 3F2 ,I2 ! 6 AI1 ! 2 A

Quick Quiz 30.1

!

944 C H A P T E R  3 0 Sources of the Magnetic Field

cause Newton’s third law must be obeyed.1 When the currents are in opposite di-
rections (that is, when one of the currents is reversed in Fig. 30.7), the forces are
reversed and the wires repel each other. Hence, we find that parallel conductors
carrying currents in the same direction attract each other, and parallel con-
ductors carrying currents in opposite directions repel each other.

Because the magnitudes of the forces are the same on both wires, we denote
the magnitude of the magnetic force between the wires as simply FB . We can
rewrite this magnitude in terms of the force per unit length:

(30.12)

The force between two parallel wires is used to define the ampere as follows:

FB

!
!

"0I1I2

2#a

When the magnitude of the force per unit length between two long, parallel
wires that carry identical currents and are separated by 1 m is 2 $ 10%7 N/m,
the current in each wire is defined to be 1 A.

The value 2 $ 10%7 N/m is obtained from Equation 30.12 with and
m. Because this definition is based on a force, a mechanical measurement

can be used to standardize the ampere. For instance, the National Institute of
Standards and Technology uses an instrument called a current balance for primary
current measurements. The results are then used to standardize other, more con-
ventional instruments, such as ammeters.

The SI unit of charge, the coulomb, is defined in terms of the ampere:

a ! 1
I1 ! I2 ! 1 A

When a conductor carries a steady current of 1 A, the quantity of charge that
flows through a cross-section of the conductor in 1 s is 1 C.

1 Although the total force exerted on wire 1 is equal in magnitude and opposite in direction to the to-
tal force exerted on wire 2, Newton’s third law does not apply when one considers two small elements
of the wires that are not exactly opposite each other. This apparent violation of Newton’s third law and
of the law of conservation of momentum is described in more advanced treatments on electricity and
magnetism.

Definition of the ampere

Definition of the coulomb

web
Visit http://physics.nist.gov/cuu/Units/
ampere.html for more information.
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30.3 Ampère’s Law 945

12.4

AMPÈRE’S LAW
Oersted’s 1819 discovery about deflected compass needles demonstrates that a
current-carrying conductor produces a magnetic field. Figure 30.8a shows how this
effect can be demonstrated in the classroom. Several compass needles are placed
in a horizontal plane near a long vertical wire. When no current is present in the
wire, all the needles point in the same direction (that of the Earth’s magnetic
field), as expected. When the wire carries a strong, steady current, the needles all
deflect in a direction tangent to the circle, as shown in Figure 30.8b. These obser-
vations demonstrate that the direction of the magnetic field produced by the cur-
rent in the wire is consistent with the right-hand rule described in Figure 30.3.
When the current is reversed, the needles in Figure 30.8b also reverse.

Because the compass needles point in the direction of B, we conclude that the
lines of B form circles around the wire, as discussed in the preceding section. By
symmetry, the magnitude of B is the same everywhere on a circular path centered
on the wire and lying in a plane perpendicular to the wire. By varying the current
and distance a from the wire, we find that B is proportional to the current and in-
versely proportional to the distance from the wire, as Equation 30.5 describes.

Now let us evaluate the product B ! ds for a small length element ds on the cir-
cular path defined by the compass needles, and sum the products for all elements
over the closed circular path. Along this path, the vectors ds and B are parallel at
each point (see Fig. 30.8b), so B ! ds ! B ds. Furthermore, the magnitude of B is
constant on this circle and is given by Equation 30.5. Therefore, the sum of the
products B ds over the closed path, which is equivalent to the line integral of
B ! ds, is

where is the circumference of the circular path. Although this result
was calculated for the special case of a circular path surrounding a wire, it holds

!ds ! 2"r

!B ! ds ! B !ds !
#0I
2"r

 (2"r) ! #0I

30.3

Andre-Marie Ampère
(1775– 1836) Ampère, a Frenchman,
is credited with the discovery of elec-
tromagnetism — the relationship be-
tween electric currents and magnetic
fields. Ampère’s genius, particularly in
mathematics, became evident by the
time he was 12 years old; his personal
life, however, was filled with tragedy.
His father, a wealthy city official, was
guillotined during the French Revolu-
tion, and his wife died young, in 1803.
Ampère died at the age of 61 of pneu-
monia. His judgment of his life is clear
from the epitaph he chose for his
gravestone: Tandem Felix (Happy at
Last). (AIP Emilio Segre Visual Archive)

(a) (b)

I  =  0

I

ds

B

Figure 30.8 (a) When no current is present in the wire, all compass needles point in the same
direction (toward the Earth’s north pole). (b) When the wire carries a strong current, the com-
pass needles deflect in a direction tangent to the circle, which is the direction of the magnetic
field created by the current. (c) Circular magnetic field lines surrounding a current-carrying con-
ductor, displayed with iron filings.

(c)
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20.4 AMPERE YASASI

Basit bir örnek: Sonsuz doğrusal tel.
I akımlı telden r uzaklıkta manyetik alan:

B =
2k0I
r

H

Manyetik alanın r yarıçaplı çembere teğet olan
bileşeninin, çember boyunca integralini alalım.

Her noktada B nin teğet bileşenini küçük ds yay
parçası ile çarpıp, çember üzerinden toplayalım.

I
B ds = B

I
ds

|{z}
2⇡r

=
2k0 I
Ar

2⇡Ar = 4⇡k0|{z}
µ0

I = µ0 I H

Sonuç r yarıçapından bağımsızdır!
Eğer I akımını dışarda bırakan bir eğri seçilseydi, sonuç sıfır olurdu. H
Ampere Yasası denilen bu sonuç en genel akım dağılımı ve seçilen eğrisel
yol için de geçerlidir. (İspat ileri düzeyde.)
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Ampere Yasası

Kapalı bir eğri boyuncamanyetik ala-
nın izdüşümünün integrali, bu eğri-
nin çevrelediği herhangi bir yüzeyi
kesen net akım ile orantılıdır:
I
~B · d~s = µ0 Iiç (Ampere Yasası) H

Iiç kapalı eğri içinde kalan net akımdır. Bir yöndeki akım pozitif ise
zıt yöndeki akım negatif alınır. H

Eğri dışında kalan akımlar hesaba katılmaz. H

Problemin simetrisine uygun bir eğri seçilirse, integral almaya gerek
kalmaz.
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30.3 Ampère’s Law 947

The Magnetic Field Created by a Long Current-Carrying WireEXAMPLE 30.4
by circle 2 must equal the ratio of the area !r 2 enclosed by
circle 2 to the cross-sectional area !R 2 of the wire:2

Following the same procedure as for circle 1, we apply Am-
père’s law to circle 2:

(for r " R) (30.15)

This result is similar in form to the expression for the electric
field inside a uniformly charged sphere (see Example 24.5).
The magnitude of the magnetic field versus r for this configu-
ration is plotted in Figure 30.12. Note that inside the wire, 
B : 0 as r : 0. Note also that Equations 30.14 and 30.15 give
the same value of the magnetic field at r # R , demonstrating
that the magnetic field is continuous at the surface of the
wire.

B # ! $0 I0

2!R 2 "r

#B ! ds # B(2!r) # $0 I # $0! r 2

R 2  I0"

 I #
r 2

R 2  I0

I
I0

#
!r 2

!R 2

A long, straight wire of radius R carries a steady current I0
that is uniformly distributed through the cross-section of the
wire (Fig. 30.11). Calculate the magnetic field a distance r
from the center of the wire in the regions and 

Solution For the case, we should get the same result
we obtained in Example 30.1, in which we applied the
Biot–Savart law to the same situation. Let us choose for our
path of integration circle 1 in Figure 30.11. From symmetry,
B must be constant in magnitude and parallel to ds at every
point on this circle. Because the total current passing
through the plane of the circle is I0, Ampère’s law gives

(for r % R) (30.14)

which is identical in form to Equation 30.5. Note how much
easier it is to use Ampère’s law than to use the Biot–Savart
law. This is often the case in highly symmetric situations.

Now consider the interior of the wire, where r " R. Here
the current I passing through the plane of circle 2 is less than
the total current I0 . Because the current is uniform over the
cross-section of the wire, the fraction of the current enclosed

B #
$0 I0

2!r

#B ! ds # B#ds # B(2!r) # $0 I0

r % R

r " R.r % R

2 Another way to look at this problem is to see that the current enclosed by circle 2 must equal the
product of the current density and the area !r 2 of this circle.J # I0/!R 2

2
R

r

1 I0

ds R
r

B ∝ 1/r

B ∝ r

B

Figure 30.11 A long, straight wire of radius R carrying a steady
current I0 uniformly distributed across the cross-section of the wire.
The magnetic field at any point can be calculated from Ampère’s law
using a circular path of radius r, concentric with the wire.

Figure 30.12 Magnitude of the magnetic field versus r for the
wire shown in Figure 30.11. The field is proportional to r inside the
wire and varies as 1/r outside the wire.

The Magnetic Field Created by a ToroidEXAMPLE 30.5
ing N closely spaced turns of wire, calculate the magnetic
field in the region occupied by the torus, a distance r from
the center.

A device called a toroid (Fig. 30.13) is often used to create an
almost uniform magnetic field in some enclosed area. The
device consists of a conducting wire wrapped around a ring
(a torus) made of a nonconducting material. For a toroid hav-
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