(FZM 114) FíZíK -II Dr. Çağın KAMIŞCIOĞLU

İÇERİK

+ Manyetik Alanın Kaynakları
+ Biot-Savart Yasası
+ Ampere Yasası

BIOT-SAVART YASASI

Oersted'in 1819'da akım-taşıyan bir iletkenin bir pusula iğnesini sapturdığmı keşfinden kısa bir süre sonra, Jean Baptiste Biot (1774-1862) ve Felix Savaft (1791-1841) bir elektrik akımının yakınındaki bir mıknatısa uyguladığı kuwerle ilgili nicel deneyler yaptılar. Biot ve Savart deneysel sonuçlardan yola çıka. rak uzaym bir noktasındaki manyetik alanı, bu alanı oluşturan akım cinsinden veren matematiksel bir ifade buldular. İfadede, kararlı bir I akımı taşıyan bir telin bir d s uzunluk elemanın P noktasında oluşturduğu $d \mathbb{B}$ manyetik alam aşağıdaki deneysel gözlemlerine dayanır (Şekil 30.1):

- $d \mathbf{B}$ vektörü, hem $d s$ (akım yönündedir) ye ve hem de $d s$ den P ye doğru yö nelen $\hat{\mathbf{r}}$ birim vektörüne diktir.
- $d \mathbb{B}$ nin büyüklüğü r^{2} ile ters orantılıdır. Burada $r, d s$ nin P ye uzaklığıdır.
- dB nin büyüklüğü akımla ve $d \mathbf{s}$ uzunluk elemanın büyüklüğü, yani $d s$ ile orantılidır.
- $d \mathbb{B}$ nin büyüklüğü $\sin \theta$ ile orantılıdır. Burada $\theta, d s$ ve $\hat{\mathbf{r}}$ vektörleri arasındar ki açıdır.

BIOT-SAVART YASASI

\$ekill 30. 1 (a) Bir d s uzunluk elemanından geçen I akımının P noktasında oluşturduğu dib manyetik alanı Biot-Savart yasasıyla verilir. P deki manyetik alanın yönü sayfa düzleminden dışa đ̛̣ P^{\prime} deki ise içe doğrudur. (b) $\hat{\mathbf{r}}, P$ ye doğru baktığnda $d \mathbf{s} \times \hat{\mathbf{r}}$ vektörel çarpımının yönüu sarĵ̣ düzleminin dışına doğru olur. $\hat{\mathbf{r}}, P^{\prime}$ ye yönelirse $d \mathbf{s} \times \hat{\mathbf{r}}$ sayfa düzleminin içine doğru olur.

BIOT-SAVART YASASI

Bu özellikler Biot-Savart olarak bilinen aşagıdaki matematiksel ifade ile özetlenebilir.

$$
d \mathbf{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \mathbf{s} \times \hat{\mathbf{r}}}{r^{2}}
$$

Burada μ_{0} serbest uzayın geçirgenliği denilen bir sabittir.

$$
\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}
$$

BIOT-SAVART YASASI

Willik 30.1 deki $d \mathbf{B}$ alanının, iletkenin yalnız küçük bir $d s$ uzunluk elemanındaki akımın oluşturduğu alan olduğuna dikkat etmek son derece önemlidir. Sonlu büyüklükteki bir akımın, bir noktada oluşturduğu B toplam manyetik dan! bulmak için, akımı oluşturan tüm Ids akım elemanlarından doğan katIlåt toplamamız gerekir. Yani, B'yi Esitlik 30.1 in integralini alarak bulmalı-

$$
\mathbf{B}=\frac{\mu_{0} I}{4 \pi} \int \frac{d \mathbf{s} \times \hat{\mathbf{r}}}{r^{2}}
$$

ÇEMBERSEL BIR AKIM ILMEĞININ EKSENI ÜZERINDEKI MANYETIK ALAN

Şekil 30.5 de görüldüğü gibi, kararlı bir I akımı taşıyan ve $y z$ düzleminde bulunan R yariçaplı çembersel bir tel ilmek veriliyor. Bu ilmeğin, ekseni üzerinde merkezinden bir x uzaklikta bulunan bir Pnoktasındaki manyetik alanı hesaplayiniz.

$$
d B=\frac{\mu_{0} I}{4 \pi} \frac{|d \mathbf{s} \times \hat{\mathbf{r}}|}{r^{2}}=\frac{\mu_{0} I}{4 \pi} \frac{d s}{\left(x^{2}+R^{2}\right)}
$$

ile verilir. Şekil 30.5 de gösterildiği gibi, $d \mathbf{B}$ alanının yönü, $\hat{\mathbf{r}}$ ve $d \mathbf{s}$ nin oluşturduğu düzleme diktir. $d \mathbf{B}$ vektörü, x ekseni boyunca bir $d B_{x}$ ve x eksenine dik bir $d B_{y}$ bileşenine ayrrlabilir. Tüm ilmek için x 'e dik bileşenler toplandığı zaman toplamlarının sıfır olduğu gōrülür. Bir başka deyişle, simetriden ötürü, ilmeğin herhangi bir tarafindaki bir eleman, çapsal olarak tam karşısındaki bir başka elemanın oluşturduğu diB alanımın dik bileşenini dengeleyerek yok edebilen bir dik bileşen oluşturacaktır. Bu nedenle, P deki bileske alan x ekseni boyunca olmali ve $d B_{x}=d B \cos \theta$ bileşenlerinin integralini alarak bulabiliriz. Yani, $\mathbf{B}=B_{x} \mathbf{i}$ olup, burada B_{x}

$$
B_{x}=\oint d B \cos \theta=\frac{\mu_{0} I}{4 \pi} \oint \frac{d s \cos \theta}{x^{2}+R^{2}}
$$

biçiminde verilir ve integrali ilmeğin tamamı üzerinden almalıyız. θ, x ve R ilmeğin tüm elemanları için sabittirler ve $\cos \theta=R /\left(x^{2}+R^{2}\right)^{1 / 2}$ olduğundan
buluruz. Burada $\oint d s=2 \pi R$ (ilmeğin çevresi) olması gerektiği gerçeği kullanıldı.

İlmeğin merkezindeki manyetik alanı bulmak için, Eşitlik 30.7 de $x=0$ alırız. Böylece, bu özel nokta için,

$$
\begin{equation*}
B=\frac{\mu_{0} I}{2 R} \quad\left(x=0^{\prime} \mathrm{da}\right) \tag{30.8}
\end{equation*}
$$

elde edilir.
Bu sonuç Örnek 30.2'nin ki ile uyuşur. Manyetik alanın davranışın, ilmekten çok uzaklarda yani, x 'in R ye go. re çok büyük olduğu zaman belirlemek de ilginçtir. Bu du* rumda, Essitlik 30.7 nin paydasındaki R^{2} terimini ihmal ede. rek

$$
\begin{equation*}
B \approx \frac{\mu_{0} I R^{2}}{2 x^{3}} \quad(x \gg R \text { için }) \tag{30.9}
\end{equation*}
$$

elde edebiliriz. İlmeğin manyetik dipol momenti μ nün büyüklüğū, ilmekten geçen akımla ilmek yüzeyinin çarpımı, çembersel ilmeğimiz için $\mu=I\left(\pi R^{2}\right)$ olduğundan, Eşitlik 30.9, aşağı 1 daki biçimde yazılabilir:

$$
\begin{equation*}
B \approx \frac{\mu_{0}}{2 \pi} \frac{\mu}{x^{3}} \tag{30.10}
\end{equation*}
$$

Bu sonuç biçimsel olarak, bir elektrik dipolünün uzaklarda oluşturduğu elektrik alan ifadesine yani $\left.E=k_{e}(2 q a) /\right)^{3 \prime} \mathrm{e}$ benzemektedir. (Örnek 23.6 ya

IKI PARALEL ILETKEN ARASINDAKI MANYETIK KUVVET

Sekil 30.7 deki gibi aynı yönde I_{1} ve I_{2} akımları taşıyan ve aralarındaki uzaklık a olan iki uzun, doğrusal ve paralel tel alalım. Tellerden biri üzerine, ôtekinin oluşturduğu alandan ötürü etkiyen manyetik kuvveti kolayca bulabiliriz. I_{2} akımını taşıyan tel-2, tel-1'in bulunduğu konumda bir \mathbf{B}_{2} alanı oluştu- F rir. Sekil 30.7 de gösterildiği gibi \mathbf{B}_{2} 'nin yönü tel-1'e diktir. Eşitlik 29.5'e göre tel-1'in ℓ uzunluğuna etkiyen manyetik kuvvet $\mathbf{F}_{1}=I_{1} \ell \times \mathbf{B}_{2}$ 'dir. ℓ, \mathbf{B}_{2} 'ye dik olduğundan \mathbf{F}_{1} 'nin büyüklüğü $F_{1}=I_{1} \ell B_{2}$ olur. \mathbf{B}_{2} nin büyüklüğü Esitlik 30.5 Ile verildiği için,

$$
F_{1}=I_{1} \ell B_{2}=I_{1} \ell\left(\frac{\mu_{0} I_{2}}{2 \pi a}\right)=\frac{\mu_{0} I_{1} I_{2}}{2 \pi a} \ell
$$

IKI PARALEL ILETKEN ARASINDAKI MANYETIK KUVVET

olduğunu görürüz. $\ell \times \mathbf{B}_{2}$ aşağı yönde olduğundan, \mathbf{F}_{1} 'in yönü aşağı tel-2'ye dogrudur. Eğer tel-2'nin bulunduğu yerde tel-1'in oluşturduğu alan hesapla\#irsa, tel-2'ye etkiyen \mathbf{F}_{2} kuvvetinin büyüklükçe \mathbf{F}_{1} e eşit fakat ters yönde oldu-

ğu görülür. Bu zaten beklenen bir olaydır, çünkü Newton'un üçüncü yasà olan etki-tepki ilkesine uyulmalıdır. ${ }^{1}$ Öte yandan akımlar zıt yönlerde olduly larında (yani, Şekil 30.7 deki akımlardan birinin yönü ters çevrilirse), kurvel. lerin yönleri tersine döner ve bu yüzden teller birbirlerini iterler. Böylece, af mı yönde akım taşıyan paralel tellerin birbirlerini cektiklerini, buna karsin zat yönlerde akım taşıyan paralel tellerin ise birbirilerini ittiklerini görürüz.

IKI PARALEL ILETKEN ARASINDAKI MANYETIK KUVVET

Her iki tele de etkiyen kuvvetlerin büyüklükleri aynı olduğundan teller arasindaki manyetik kuvvetin büyüklüğünü F_{B} ile gösterebiliriz. Bu büyüklüğü telin birim uzunluğuna etkiyen kuvvet cinsinden yazarsak;

$$
\frac{F_{B}}{\ell}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi a}
$$

AMPERE YASASI

AMPERE YASASI

Basit bir örnek: Sonsuz doğrusal tel.
I akımlı telden r uzaklıkta manyetik alan:

$$
B=\frac{2 k^{\prime} I}{r}
$$

Manyetik alanın r yarıçaplı çembere teğet olan bileşeninin, çember boyunca integralini alalım.

Her noktada B nin teğet bileşenini küçük $d s$ yay parçası ile çarpıp, çember üzerinden toplayalım.

$$
\oint B d s=B \underbrace{\oint d s}_{2 \pi r}=\frac{2 k^{\prime} I}{k} 2 \pi \mathrm{k}=\underbrace{4 \pi k^{\prime}}_{\mu_{0}} I=\mu_{0} I
$$

Sonuç r yarıçapından bağımsızdır!
Eğer I akımını dışarda bırakan bir eğri seçilseydi, sonuç sıfır olurdu. v Ampere Yasası denilen bu sonuç en genel akım dağılımı ve seçilen eğrisel yol için de geçerlidir. (İspat ileri düzeyde.)

AMPERE YASASI

Ampere Yasasi

Kapalı bir eğri boyunca manyetik alanın izdüşümünün integrali, bu eğrinin çevrelediği herhangi bir yüzeyi kesen net akım ile orantılıdır:

$$
\oint \overrightarrow{\boldsymbol{B}} \cdot d \overrightarrow{\boldsymbol{s}}=\mu_{0} I_{\mathrm{iç}} \quad \text { (Ampere Yasası) }
$$

- $I_{\text {iç }}$ kapalı eğri içinde kalan net akımdır. Bir yöndeki akım pozitif ise zıt yöndeki akım negatif alınır.
- Eğri dışında kalan akımlar hesaba katılmaz. .
- Problemin simetrisine uygun bir eğri seçilirse, integral almaya gerek kalmaz.

UZUN BIR AKIM TAŞIYAN TELIN MANYETİK ALANI

Kestitinin her tarafına düzgün dağ̣̆lmış kararlı bir I_{0} akımı thytyan R yarıçaplı uzun ve doğrusal bir tel veriliyor (Şek. 60.11). $\geq R$ ve $r<R$ bölgelerinde telin merkezinden r uzakiktak noktalarda manyetik alanı hesaplaynız.

$$
\begin{gathered}
\oint \mathbf{B} \cdot d \mathbf{s}=B \oint d s=B(2 \pi r)=\mu_{0} I_{0} \\
B=\frac{\mu_{0} I_{0}}{2 \pi r} \quad(\text { for } r \geq R)
\end{gathered}
$$

$$
\begin{gathered}
\oint \mathbf{B} \cdot d \mathbf{s}=B(2 \pi r)=\mu_{0} I=\mu_{0}\left(\frac{r^{2}}{R^{2}} I_{0}\right) \\
B=\left(\frac{\mu_{0} I_{0}}{2 \pi R^{2}}\right) r \quad(\text { for } r<R)
\end{gathered}
$$

KAYNAKLAR

1. http://www.seckin.com.tr/kitap/413951887 ("Üniversiteler için Fizik", B. Karaoğlu, Seçkin Yayıncılık, 2012).
2.Fen ve Mühendislik için Fizik Cilt-2, R.A.Serway,R.J.Beichner,5.Baskıdan çeviri, (ÇE) K. Çolakoğlu, Palme Yayıncılık.
2. Üniversite Fiziği Cilt-I, H.D. Young ve R.A.Freedman, (Çeviri Editörü: Prof. Dr. Hilmi Ünlü) 12. Baskı, Pearson Education Yayıncılık 2009, Ankara.
3. https://www.youtube.com/user/crashcourse
