(FZM 114) FíZíK -II Dr. Çağın KAMIŞCIOĞLU

İÇERİK

+ MIKNATISLIK VE OZELLIKLERI
+ MANYETIK ALAN
+ MANYETIK KUVVET
+ SAG EL KURALI
+ YÜKLÜ BIR PARÇACIĞİN MANYETIK ALANDA HAREKETI
+ ÖRNEK

MIKNATISLIK

Aynı maddeden yapılmış mıknatıstan büyük olanı daha kuvvetli olacaktır.
Miknatıs demir, nikel ve kobaltı çeker
Miknatıslık etkisinin olduğu uçlara kutup adı verilir.

Faraday, 1830'lardan başlayarak, elektrik alanı fikrini geliştirmece liderdi. İşte fikir:

Yüklü bir parçacık tüm boşluğa bir
"alan"yayar

Yüklü başka bir parçacık alanıalgılar ve ilk parçacığın orada olduğunu "bilir".
aynı
yükler
farklı yükler

MANYETİK ALAN

Herhangi bir duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alan sarmaktadır. Herhangi bir hareketli elektrik yükünün çevresindeki uzay bölgesi elektrik alana ek olarak bir de manyetik alan içerir. Herhangi bir manyetik maddeyi de saran bir manyetik alan vardır.

Tarihsel olarak, bir manyetik alanı temsil etmek için B harfi kullanılmaktadır.

MANYETİK ALAN

N kutbundan S kutbuna doğrudur
Birbirlerini kesecek şekilde yönelmezler.
Manyetik alana şiddeti çizgilerin sıklğ̆ına bağldır. Çizgi sıklığının arttığı yerde manyetik alan şiddeti büyük, seyrekleştiği yerde zayıftrr.

DÜNYA'NIN MANYETIK ALANI

https://www.mozaweb.com/Extra-3D_scenes-The_Earth_s_magnetic_field-47092

MANYETİK ALAN

Uzayın bir noktasındaki B manyetik alanmı bilmek istiyoruz. O halde orada bulunan bir deneme yükünü inceleyebiliriz. Yani bu alana bir deneme yükü koyarsak eğer manyetik alan bu yüke bir kuvvet uygulayacaktır. Uyguladığı kuvvet F_{B} şeklinde ifade edilir. Deneme yükü v hizı ile hareket eden yüklü bir parçacık olarak alnabilir. Şimdilik yükün bulunduğu bölgede hiçbir elektrik alan ya ada yerçekim alanı bulunmadığını varsayalım. Bir manyetik alan içerisindeki hareket eden çeşitli yüklü parçacıklarin hareketeri ile ilgili deneyeler aşagıdakı sonuçlari vermektedir.

- Parçacığa etkiyen manyetik kuvvetin büyüklüğŭ F_{B}, parçacığın v sürati ve q yükü ile orantulıdır.

MANYETİK KUVVET

Bu hesaplama arkadaşlara vektörel bir özellik göstermektedir.

Hareketli Bir Yüke Etkiyen Manyetik Kuvvet

$$
\vec{F}=q(\vec{v} \times \vec{B})
$$

- Kuvvet q yüküyle, v hizıyla ve B manyetik alanıyla orantill.
- Kuvvet $\pm q$ için zit yönlerde. v
- Büyüklüğü: Vektörel çarpım olduğundan: $F=q v B \sin \theta$,
- Yönü: Sağ-el kuralı: Dört parmak birinci vektör ($\overrightarrow{\boldsymbol{v}}$) yönünde, avuç içi ikinci vektör $(\overrightarrow{\boldsymbol{B}})$ yönünde uzatıldığında, başparmak $\overrightarrow{\boldsymbol{F}}$ yönünde. v
- Manyetik alan birimi: $\quad B=F /(q v \sin \theta)$ ifadesinden:

$$
1 \frac{\mathrm{~N}}{\mathrm{C} \times \mathrm{m} / \mathrm{s}}=1 \frac{\mathrm{~N}}{\mathrm{~A} \cdot \mathrm{~m}}=1 \text { tesla }=1 \mathrm{~T}
$$

SAĞ EL KURALI

SAĞ EL KURALI

yük negatif

MANYETİK ALAN

- F_{B} Manyetik kuvvetinin büyüklüğū ve yönü, parçacığın hızına ve \mathbf{B} manyetik alanının büyüklüğŭ ve yönüne bağlıdır.
- Yüklü bir parçacık manyetik alan vektörüne paralel yönde hareket ettiği zaman ona etkiyen manyetik kuvvet sıfirdtr.
- Parçacığın hız vektörü manyetik alanla bir $\theta \neq 0$ açısı yaptığı zaman, manyetik kuvvet hem \mathbf{v}, hem de \mathbf{B} ye dik yönde etki eder. Yani $\mathbf{F}_{B}, \mathbf{v}$ ve \mathbf{B} nin oluşturduğu düzleme diktir (Şekil 29.3a).
- Bir pozitif yüke etkiyen manyetik kuvvet, aynı yönde hareket eden bir nega: tif yüke etkiyen kuvvetin yönüne terstir. (Şekil 29.3 b).
- Eğer parçacığın hız vektörü \mathbb{B} nin yönü ile bir θ açısı yaparsa, parçacığı et. kiyen manyetik kuvvetin büyüklüğü $\sin \theta$ ile orantılıdır.

MANYETİK KUVVET

$$
F_{B}=|q| v B \sin \theta
$$

bağıntısi ile verilir. Burada θ, v ile \boldsymbol{B} arasındaki açıdır. Bu eşitlikten v, B'ye paralel ya da antiparalel olduğunda ($\theta=0$ veya $\theta=180$) F^{\prime} nin sıfır olduğunu görürüz. Öte yandan v' B'ye dik olduğunda $(\theta=90)$ kuvvet maksimum değerini alrr.

$$
\theta=180
$$

 B

ELEKTRIK VE MANYETIK ALAN

- Elektrik kuvveti, her zaman elektrik alanına paralel, buna karşın manyetik kuvet manyetik alana dik olarak etkir.
- Elektrik kuvveti, yüklü parçacığın hızından bağımsızdır. Halbuki, manyetik kuvvet yalnızca yüklü parçacık hareket halinde ise ona etki edebilir.
- Elektrik kuvveti yüklü bir parçacığın konumunu değiştirerek iş yapar, buna karsın kararh bir manyetik alandan kaynaklanan manyetik kuvvet, parçacık yer değiştirdiğinde iş yapmaz.

ELEKTRIK VE MANYETIK ALAN

- $\overrightarrow{\boldsymbol{F}}=q \overrightarrow{\boldsymbol{E}}$ tanımına göre:

Elektrik Kuvveti

- Konulan q yükü pozitif ise, $\overrightarrow{\boldsymbol{E}}$ ile $\overrightarrow{\boldsymbol{F}}$ aynı yönde,
- $\quad q$ yükü negatif ise, $\overrightarrow{\boldsymbol{E}}$ ile $\overrightarrow{\boldsymbol{F}}$ ztt yönde olurlar.

$$
\begin{aligned}
& \text { Manyetik Kuvvet } \\
& \qquad \overrightarrow{\boldsymbol{F}}=q(\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{B}})
\end{aligned}
$$

- Kuvvet q yüküyle, v hızıyla ve B manyetik alanıyla orantılı.
- Kuvvet $\pm q$ için zit yönlerde. .

BIR ÖRNEK

ORNER 29.1 Manyetik Alanda Hareket Eden Bir Elektron

Bir televizyonun resim tüpündeki bir elektron x ekseni boyunca $8,0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ lik bir süratle tüpün ōnüne (ekran) doğru ilerliyor (Şekil 29.5). Tüpün boynuna sarılan telden yapılmıs kangallar $0,025 \mathrm{~T}$ büyüklüğünde bir alan oluştururlar. Bu alan $x y$ düzleminde olup x-ekseni arasındaki açı 60° dir. Elektrona etkiyen manyetik kuvveti ve elektronun ivmesini bulunuz.

Cozüm 29.2 Essitliğini kullanarak manyetik kuvvetin büyüklüğŭnü bulabiliriz:

$$
\begin{aligned}
F_{B} & =|q| v B \sin \theta \\
& =\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(8.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)(0.025 \mathrm{~T})\left(\sin 60^{\circ}\right) \\
& =2.8 \times 10^{-14} \mathrm{~N}
\end{aligned}
$$

$\mathbf{v} \times \mathbf{B}$ pozitif z yönünde (sağ el kuralına göre) ve yük negatif olduğundan, \mathbf{F}_{B} negatif z yönündedir.

Elektronun kütlesi $9,11 \times 10^{-31} \mathrm{~kg}$ dır, bu nedenle ivmesi,

$$
a=\frac{F_{B}}{m_{e}}=\frac{2.8 \times 10^{-14} \mathrm{~N}}{9.11 \times 10^{-31} \mathrm{~kg}}=3.1 \times 10^{16} \mathrm{~m} / \mathrm{s}^{2}
$$

olup negatif z yönündedir.

Şekil 29.5 v ve B $x y$ düzleminde olduğunda elektrona etkiyen \mathbf{F}_{B} manyetik kuvveti negatif z yönündedir.

YÜKLÜ PARÇACIĞIN DÜZGÜN BİR MANYETIK ALANDA HAREKETI

Düzgün bir manyetik alan içerisindeki hareket eden pozitif yüklü bir parçacık ele alalim, parcacığın hiz vektörü başlangiçta alana dik olsun. Manyetik alan sayfanin içine doğru

Görülduĭğu üzere
parçacık manyetik alana
dik bir düzlemde çembersel
bir hareket yapacaktir.

$$
\mathbf{F}_{B}=q \mathbf{v} \times \mathbf{B}
$$

sağ el kuralı

YÜKLÜ PARÇACIĞIN DÜZGÜN BİR MANYETIK ALANDA HAREKETI

Parçacık manyetik kuvvet etkisi altında dairesel bir hareket yapmaktadir. O halde bu manyetik kuvveti merkezcil kuvvete eşitleyebiliriz.

$$
\sum F=m a_{r}
$$

$$
F_{B}=q v B=\frac{m v^{2}}{r}
$$

$$
\text { yörüngenin yariçapı } \longrightarrow r=\frac{m v}{q B}
$$

$$
\begin{aligned}
& T=\frac{2 \pi r}{v}=\frac{2 \pi}{\omega}=\frac{2 \pi m}{q B} \\
& \text { hareketin periyodu }
\end{aligned}
$$

YÜKLÜ PARÇACIĞIN DÜZGÜN BİR MANYETIK ALANDA HAREKETI

3. A. Sabit bir manyetik alana dik olarak cembersel bir yorüngede hareket eden bir proton bir turunu 1,00 μs de tamamladığına göre manyetik alanın büyüklüğ̣̆ nü bulunuz.

$$
\begin{gathered}
F_{B}=q v B=\frac{m v^{2}}{r} \quad T=\frac{2 \pi r}{v}=\frac{2 \pi}{\omega}=\frac{2 \pi m}{q B} \\
B=2 \pi m / q T=6.56 \times 10^{-2} \mathrm{~T}
\end{gathered}
$$

KAYNAKLAR

1. http://www.seckin.com.tr/kitap/413951887 ("Üniversiteler için Fizik", B. Karaoğlu, Seçkin Yayıncılık, 2012).
2.Fen ve Mühendislik için Fizik Cilt-2, R.A.Serway,R.J.Beichner,5.Baskıdan çeviri, (ÇE) K. Çolakoğlu, Palme Yayıncılık.
2. Üniversite Fiziği Cilt-I, H.D. Young ve R.A.Freedman, (Çeviri Editörü: Prof. Dr. Hilmi Ünlü) 12. Baskı, Pearson Education Yayıncılık 2009, Ankara.
3. https://www.youtube.com/user/crashcourse
