(FZM 109, FZM111) FIZİK -1 Dr. Çağın KAMIŞCIOĞLU

İÇERİK

+ Doğrusal Momentum ve Koruпити
+ İki Parçacıklı Bir Sistem İçin Momentum Korunumu
+ Impuls ve Momentum
+ Çarpışmalar
+ Esnek Çarpışma
+ Esnek Olmayan Çarpışma
+ İki Boyutta Çarpışma
+ Kütle Merkezi

DOĞRUSAL MOMENTUM VE KORUNUMU

v hizı ile hareket eden m kütleli bir parçacığın doğrusal momentumu kütle ve hızın çarpımi olarak tanımlanır.

$$
\mathbf{p} \equiv m \mathbf{v}
$$

Bir m skaleri ile bir V vektörünün çarpımına eşit olduğundan momentum vektörel bir niceliktir. Yönü hzz ile aynıdır ve boyutu ML/T'dir/SI'de birimi $\mathrm{kg} . \mathrm{m} / \mathrm{s}$ 'dir.

Bir parçacik rasgele bir yönde hareket ediyorsa, p üç bileşene sahip olur ve

$$
p_{x}=m v_{x} \quad p_{y}=m v_{y} \quad p_{z}=m v_{z}
$$

İKİ PARÇACIKLI BİR SİSTEM İÇİN MOMENTUM KORUNUMU

Birbirleriyle etkileşen çevrelerinden yalitılmışiki parçacık ele alalım. Bu durumun analizinde Newton'u üçüncü kanunu önemlidir.

Bir an için 1. parçacığın momentumu p_{1} ve 1. parçacığın momentumu p_{2} olduğunu varsayalım.
Her parçacığa Newton'un 2. yasasını uygularsak;

$$
\mathbf{F}_{21}=\frac{d \mathbf{p}_{1}}{d t} \quad \text { and } \quad \mathbf{F}_{12}=\frac{d \mathbf{p}_{2}}{d t}
$$

$$
\mathbf{F}_{21}+\mathbf{F}_{12}=0
$$

$$
\frac{d \mathbf{p}_{1}}{d t}+\frac{d \mathbf{p}_{2}}{d t}=\frac{d}{d t}\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right)=0
$$

İKİ PARÇACIKLI BİR SİSTEM İÇİN MOMENTUM KORUNUMU

Toplam momentumun ($p_{\text {top }}=p_{1}+p_{2}$) zamana göre türevi sıfir olduğundan sistemin toplam momentumunun sabit kaldığı sonucuna varırız.

Yalutllmış bir sistemin toplam momentumunun her zaman ilk momentumuna eşit olduğunu söyler.

İMPULS VE MOMENTUM

$$
\mathbf{I} \equiv \int_{t_{i}}^{t_{f}} \mathbf{F} d t=\Delta \mathbf{p}
$$

Bir parçacık üzerine etkiyen F kuvvetinin impulsu, bu kuvvetin sebep olduğu parçacığın momentumundaki değişime eşittir.

ÇARPIŞMALAR

Çarpışma, iki parçacığın birbiri üzerine impulsif kuvvetler oluşturarak kısa süre birlikte olmaları olarak tanımlanabilir.

$$
\Delta \mathbf{p}_{1}=\int_{t_{i}}^{t_{s}} \mathbf{F}_{21} d t
$$

(a)

(b)
olarak yazılabilir. Benzer şekilde, m_{1} 'in m_{2} üzerine uyguladığ kuvvet \mathbf{F}_{12} olmak üzere, $m_{2}{ }^{\prime}$ nin momentumundaki değişim de

$$
\Delta \mathbf{p}_{2}=\int_{t_{i}}^{t_{s}} \mathbf{F}_{12} d t
$$

ile verilir. Nitekim Newton'un üçüncü yasasma göre şu sonucu yazabiliriz:

$$
\begin{aligned}
\Delta \mathbf{p}_{1} & =-\Delta \mathbf{p}_{2} \\
\Delta \mathbf{p}_{1}+\Delta \mathbf{p}_{2} & =0
\end{aligned}
$$

Sistemin toplam momentumu $\mathbf{p}_{\text {sistem }}=\mathbf{p}_{1}+\mathbf{p}_{2}$ olduğundan, çarpışmadan dolayı sistemin momentumundaki değişimin sıfir olduğu sonucuna varırız. Bu da,

$$
\mathbf{p}_{\text {sistem }}=\mathbf{p}_{1}+\mathbf{p}_{2}=\text { sabit }
$$

Yalıtılmış bir sistemin çarpışmadan hemen önceki toplam momentumu, çarpışmadan hemen sonraki toplam momentumuna eşittir.

BİR BOYUTTA ESNEK VE ESNEK OLMAYAN ÇARPIŞMALAR

iki cismin arasındaki esnek çarpışma toplam momentum ve toplam kinetik enerjinin çarpışmadan önce ve sonra sabit kaldığı çarpışmadır.
iki cismin arasındaki esnek olmayan çarpıșma momentum korunduğu halde toplam kinetik enerjinin çarpışmadan önce ve sonra aynı olmadığl çarpışmadır.
bir meteor taşınin yere çarptığinda olduğu gibi çarpışan cisimlerin çarpışmadan sonra birlikte hareket ettiği çarpışma tamamen esnek olmayan çarpışma olarak adlandırılmaktadır.

ESNEK ÇARPIŞMA

Şimdi kafa-kafaya esnek çarpışmaya uğrayan iki parçacığı ele alalım. Bu durumda momentum ve kinetik enerji birlikte korunur.

Before collision

After collision

(b)

$$
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}
$$

$$
\frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}
$$

$$
\begin{aligned}
& v_{1 f}=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) v_{1 i}+\left(\frac{2 m_{2}}{m_{1}+m_{2}}\right) v_{2 i} \\
& v_{2 f}=\left(\frac{2 m_{1}}{m_{1}+m_{2}}\right) v_{1 i}+\left(\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right) v_{2 i}
\end{aligned}
$$

Ilk hizlar cinsinden son hizlar

İKİ BOYUTTA ÇARPIŞMA

İki parçacığın herangi bir çarpışması içinde x, y ve z doğrultularının herbirinde toplam momentum korunur.

$$
\begin{aligned}
& m_{1} v_{1 i x}+m_{2} v_{2 i x}=m_{1} v_{1 f x}+m_{2} v_{2 f x} \\
& m_{1} v_{1 i y}+m_{2} v_{2 i y}=m_{1} v_{1 f y}+m_{2} v_{2 f y}
\end{aligned}
$$

(a) Before the collision

(b) After the collision

KÜTLE MERKEZİ

Bu kesimde, mekanik bir sistemin bütününün hareketini, sistemin kütle merkezi olarak adlandırılan özel bir nokta yardımıyla açıklayacağız. Mekanik sistem, bir kap içindeki atomlar gibi bir parçacıklar sistemi veya havada takla atan bir jimnastikçi gibi büyük bir cisim olabilir. Mekanik sistemin, sanki bütün kütlesinin kütle merkezinde yoğunlaşmış gibi hareket ettiğini göreceğiz. Dahası, sisteme etkiyen toplam dış kuvvet $\Sigma \mathbf{F}_{\text {dsṣ }}$ ve sistemin toplam kütlesi M ise, kütle merkezi, $\mathbf{a}=\sum \mathbf{F}_{\text {dış }} / M$ ivmesi ile hareket eder. Yani, sistem sanki dıs kuvvet kütle merkezine yerleşmiş M kütleli tek bir parçacığa uygulanıyormuss gibi hareket eder.

KÜTLE MERKEZİ

Örneğin, Şekil 9.18'de gösterilen bir parçacık çiftinin kütle merkezi, x ekseni üzerinde ve parçacıklar arasinda bir yerdedir. Bu durumda kütle merkezinin x koordinatı

$$
\begin{equation*}
x_{\mathrm{KM}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}} \tag{9.27}
\end{equation*}
$$

Figure 9.18

KAYNAKLAR

1.Fen ve Mühendislik için Fizik Cilt-2, R.A.Serway,R.J.Beichner,5.Baskıdan çeviri, (ÇE) K. Çolakoğlu, Palme Yayıncılık.
2. Üniversite Fiziği Cilt-I, H.D. Young ve R.A.Freedman, (Çeviri Editörü: Prof. Dr. Hilmi Ünlü) 12. Baskı, Pearson Education Yayıncılık 2009, Ankara.

