

(FZM 109, FZM111) FİZİK –1 Dr. Çağın KAMIŞCIOĞLU

İÇERİK

+ İş

- + Değişken Bir Kuvvetin Yaptığı İş
- + Yayın Yaptığı İş

(a)

(c)

Uygulanan kuvvetin büyüklüğünün her üç fotoğrafta aynı olduğunu varsayarsak, b de uygulanan itmenin silgiyi a'daki itişten daha kolay hareket ettireceği açıktır. Öte yandan c'deki silgi ne şiddette itilirse itilsin, uygulanan kuvvetin silgiyi hiçbir şekilde hareket ettiremeyeceği açıktır.

İş, bir kuvvet bir nesnenin hareket etmesine neden olduğunda meydana gelen enerji transferidir.

- Yapılan iş joule cinsinden ölçülür (J)
- Kuvvet Newton cinsinden ölçülür (N)
- Mesafe metre cinsinden ölçülür (m)

	$\begin{array}{c} \mathbf{F} \\ \theta \\ F\cos\theta \end{array}$	
© 2003 Thomson - Brooks	$\Delta \mathbf{x}$	

- İş skaler bir niceliktir
- * İşin işareti F'nin ve d'nin yönüne bağlıdır.
- * Uygulanan kuvvetin Fdcosθ bileşeni yerdeğiştirme ile yanı yönlü olduğunda kuvvetin yaptığı iş pozitiftir.
- Bir cisim yukarı doğru kaldırıldığında iş yapılır mı?

Evet kuvvet yerdeğiştirme ile aynı yönlüdür.

- * Eğer Fcosθ bileşeni ile yerdeğiştirme zıt yönlü olduğunda iş negatiftir.
- Örneğin bir cisim kaldırıldığında kaldırma kuvvetinin yaptığı iş ve kütle-çekim kuvvetinin cisim üzerine yaptığı iş nedir?

$$W = Fd$$

$$W = -Fd$$

 $W = Fd\cos\theta$

(a) pozitif iş

(b) Sıfır iş

(c) Negatif iş

Dr. Çağın KAMIŞCIOĞLU, Fizik I, İş-Kinetik Enerji I

DEĞİŞKEN BİR KUVVETİN YAPTIĞI İŞ

Değişken bir kuvvetin etkisi altında ve *x*-ekseni boyunca yerdeğiştiren bir cismi inceleyelim. Bu cisim, *x* ekseni üzerinde $x = x_i \text{ den } x = x_s$ ye yerdeğiştirsin. Böyle bir durumda kuvvetin yaptığı işi hesaplamak için $W = (F \cos \theta) d$ yi kullanamayız. Çünkü bu bağıntı, sadece **F** büyüklük ve yönce sabit olduğunda uygulanır. Fakat, cismin Şekil 7.7a da tanımlanan küçük bir Δx yerdeğiştirmesi yaptığını düşünürsek, kuvvetin *x* bileşeni (F_x) bu aralıkta yaklaşık olarak sabit olur.

Dr. Çağın KAMIŞCIOĞLU, Fizik I, İş-Kinetik Enerji I

Bir Yayın Yaptığı İş

Kuvvetin konumla değiştiği genel bir fiziksel sistem Şekil 7.10 da gösterilmiş ^{5.3} tir. Pürüzsüz, yatay bir yüzey üzerindeki bir cisim, sarmal bir yaya bağlıdır. Yay, denge konumundan gerilir veya sıkıştırılırsa, cisim üzerine

$$F_s = -kx$$
 (7.9) Yay kuvveti

ile verilen bir kuvvet uygular. Burada x, cismin gerilmemiş (x = 0) konumuna göre yerdeğiştirmesi, **k** yayın kuvvet sabiti olarak adlandırılan pozitif bir sabittir. Diğer bir deyişle, bir yayı germek veya sıkıştırmak için gerekli kuvvet, gerilme veya sıkıştırmanın x – büyüklüğü ile orantılıdır. Yaylar için **Hooke kanunu** olarak bilinen bu kuvvet yasası, sadece küçük yerdeğiştirmeler için geçerlidir. Sert yaylar daha büyük, yumuşak yaylar daha küçük k değerlerine sahiptir.

YAYIN YAPTIĞI İŞ

Bloğun, denge konumundan sola doğru bir x_{maks} kadar itildiğini ve sonra serbest bırakıldığını varsayınız. Blok $x_i = -x_{maks}$ den $x_s = 0$ a hareket ederken yay kuvvetinin yaptığı işi hesaplayalım. 7.7 Eşitliğini uygulayarak

$$W_{s} = \int_{x_{i}}^{x_{s}} F_{s} dx = \int_{-x_{maks}}^{0} (-kx) dx = \frac{1}{2} k x_{maks}^{2}$$
(7.10)

Kütle $x = x_i$ den $x = x_s$ ye keyfi bir yerdeğiştirme yaparsa, yay kuvvetinin yaptığı iş

$$W_{s} = \int_{x_{i}}^{x_{s}} (-kx) dx = \frac{1}{2}k x_{i}^{2} - \frac{1}{2}k x_{s}^{2}$$
 (7.11) Yayın yaptığı iş

Dr. Çağın KAMIŞCIOĞLU, Fizik I, İş-Kinetik Enerji I

YAYIN YAPTIĞI İŞ

Dr. Çağın KAMIŞCIOĞLU, Fizik I, İş-Kinetik Enerji I

KAYNAKLAR

1.Fen ve Mühendislik için Fizik Cilt-2, R.A.Serway, R.J.Beichner, 5.Baskıdan çeviri, (ÇE) K. Çolakoğlu, Palme Yayıncılık.

2. Üniversite Fiziği Cilt-I, H.D. Young ve R.A.Freedman, (Çeviri Editörü: Prof. Dr. Hilmi Ünlü) 12. Baskı, Pearson Education Yayıncılık 2009, Ankara.