(FZM 109, FZM111) FIZİK -1 Dr. Çağın KAMIŞCIOĞLU

İÇERİK

$+\dot{I}$ Ş

+ Değişken Bir Kuvvetin Yaptığı İş
+ Yayn Yaptığı İş

İş

(a)

(b)

(c)

Uygulanan kuvvetin büyüklüğünün her ų̧̈ fotoğrafta aynı olduğunu varsayarsak, b de uygulanan itmenin silgiyi a'daki itişten daha kolay hareket ettireceği açıktır. Öte yandan c'deki silgi ne şiddette itilirse itilsin, uygulanan kuvvetin silgiyi hiçbir şekilde hareket ettiremeyeceği açıktır.

İş

İş, bir kuvvet bir nesnenin hareket etmesine neden olduğunda meydana gelen enerji transferidir.

$$
W=F d \cos \theta
$$

- Yapilan iş joule cinsinden ölçülür (J)
- Kuvvet Newton cinsinden ölçulür (N)
- Mesafe metre cinsinden ölçülür (m)

İş

* İş skaler bir niceliktir
* İşin işareti F'nin ve d'nin yönüne bağlıdır.
* Uygulanan kuvvetin Fdcos θ bileşeni yerdeğiştirme ile yanı yönlü olduğunda kuvvetin yaptığ̣ iș pozitiftir.
* Bir cisim yukarı doğru kaldırıldığında iş yapılır mı?
$W=F d \cos \theta$
Evet kuvvet yerdeğiştirme ile aynı yönlüdür.
* Eğer $F \cos \theta$ bileșeni ile yerdeğiştirme zıt yönlü olduğunda iș negatiftir.
* Örneğin bir cisim kaldırıldığında kaldırma kuvvetinin yaptığı iş ve kütle-çekim kuvvetinin cisim üzerine yaptığı iş nedir?

(c) Negatif iş

DEĞİŞKEN BİR KUVVETİN YAPTIĞI İŞ

Değişken bir kuvvetin etkisi altında ve x-ekseni boyunca yerdeğiştiren bir cismi inceleyelim. Bu cisim, x ekseni üzerinde $x=x_{i}$ den $x=x_{s}$ ye yerdeğiştirsin. Böyle bir durumda kuvvetin yaptuğ işi hesaplamak için $W=(F \cos \theta) d$ yi kullanamayız. Çünkü bu bağıntı, sadece \mathbf{F} büyüklük ve yönce sabit olduğunda uygulanır. Fakat, cismin Şekil 7.7a da tanımlanan küçük bir Δx yerdeğiştirmesi yaptığını düşünürsek, kuvvetin x bileşeni $\left(F_{x}\right)$ bu aralıkta yaklaşık olarak sabit olur.

(a)

(b)

$$
W=\int_{x_{i}}^{x_{f}} F_{x} d x
$$

YAYIN YAPTIĞI İŞ

Bir Yayın Yaptığı İş

© Kuvvetin konumla değiştiği genel bir fiziksel sistem Şekil 7.10 da gösterilmiş53 tir. Pürüzsüz, yatay bir yüzey üzerindeki bir cisim, sarmal bir yaya bağlıdır. Yay, denge konumundan gerilir veya sıkıştırılırsa, cisim üzerine

$$
\begin{equation*}
F_{s}=-k x \tag{7.9}
\end{equation*}
$$

ile verilen bir kuvvet uygular. Burada x, cismin gerilmemiş ($x=0$) konumuna göre yerdeğiştirmesi, \mathbf{k} yayın kuvvet sabiti olarak adlandırılan pozitif bir sabittir. Diğer bir deyişle, bir yayı germek veya sıkıştırmak için gerekli kuvvet, gerilme veya sıkıştırmanın x-büyüklüğü ile orantıhdır. Yaylar için Hooke kanunu olarak bilinen bu kuvvet yasası, sadece küçük yerdeğiştirmeler için geçerlidir. Sert yaylar daha büyük, yumuşak yaylar daha küçük k değerlerine sahiptir.

YAYIN YAPTIĞI İŞ

Bloğun, denge konumundan sola doğru bir $x_{\text {maks }}$ kadar itildiğini ve sonra serbest bırakıldığını varsayımız. Blok $x_{i}=-x_{\text {maks }}$ den $x_{s}=0$ a hareket ederken yay kuvvetinin yaptığı işi hesaplayalım. 7.7 Eşitliğini uygulayarak

$$
\begin{equation*}
W_{s}=\int_{x_{i}}^{x_{s}} F_{s} d x=\int_{-x_{\text {maks }}}^{0}(-k x) d x=\frac{1}{2} k x_{\text {maks }}^{2} \tag{7.10}
\end{equation*}
$$

Kütle $x=x_{i}$ den $x=x_{s}$ ye keyfi bir yerdeğiştirme yaparsa, yay kuvvetinin yaptuğı iş

$$
W_{s}=\int_{x_{i}}^{x_{s}}(-k x) d x=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{s}^{2}
$$

(7.11) Yayın yaptığı iş

YAYIN YAPTIĞI İŞ

Dr. Çağın KAMIȘCIOĞLU, Fizik I, (İs-Kinetik Enerji I

KAYNAKLAR

1.Fen ve Mühendislik için Fizik Cilt-2, R.A.Serway,R.J.Beichner,5.Baskıdan çeviri, (ÇE) K. Çolakoğlu, Palme Yayıncılık.
2. Üniversite Fiziği Cilt-I, H.D. Young ve R.A.Freedman, (Çeviri Editörü: Prof. Dr. Hilmi Ünlü) 12. Baskı, Pearson Education Yayıncılık 2009, Ankara.

