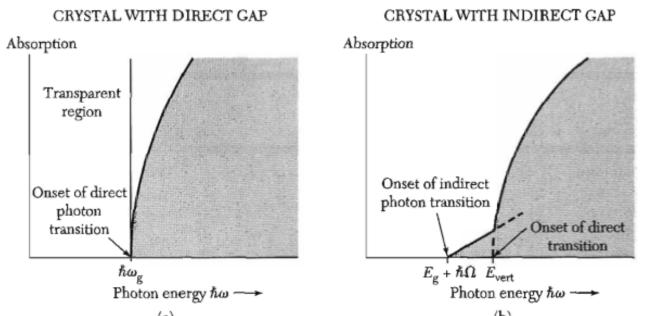
## PHY404- Solid State Physics II

Assoc.Prof. Yeşim Moğulkoç


# Energy gap between valence and conduction bands

|             | $E_{g},  \mathrm{eV}$ |       |                          |                   |     | $E_{\rm g},{ m eV}$ |             |
|-------------|-----------------------|-------|--------------------------|-------------------|-----|---------------------|-------------|
| Crystal     | Gap                   | 0 K   | 300 K                    | Crystal           | Gap | 0 K                 | 300 K       |
| Diamond     | i                     | 5.4   | 1.05496.464.56.254.454.8 | SiC(hex)          | i   | 3.0                 |             |
| Si          | i                     | 1.17  | 1.11                     | Te                | d   | 0.33                |             |
| Ge          | ŧ                     | 0.744 | 0.66                     | HgTe*             | d   | -0.30               |             |
| $\alpha$ Sn | d                     | 0.00  | 0.00                     | PbS               | d   | 0.286               | 0.34 - 0.37 |
| InSb        | d                     | 0.23  | 0.17                     | PbSe              | i   | 0.165               | 0.27        |
| InAs        | d                     | 0.43  | 0.36                     | PbTe              | i   | 0.190               | 0.29        |
| InP         | d                     | 1.42  | 1.27                     | CdS               | d   | 2.582               | 2.42        |
| GaP         | ŧ                     | 2.32  | 2.25                     | CdSe              | d   | 1.840               | 1.74        |
| GaAs        | d                     | 1.52  | 1.43                     | CdTe              | d   | 1.607               | 1.44        |
| GaSb        | d                     | 0.81  | 0.68                     | SnTe              | d   | 0.3                 | 0.18        |
| AlSb        | i                     | 1.65  | 1.6                      | Cu <sub>2</sub> O | d   | 2.172               | _           |

i: indirect gap, d: direct gap

(The table is used from Introduction to Solid State Physics, C. Kittel)

#### **Optical Adsorption in Pure Insulators**



In (a) The threshold determines the energy gap, optical absorption is weaker near the threshold.

In (b) the energy *E*, marks the threshold for the creation of a free electron and a free hole, with no phonon involved.

Such a transition is called vertical; it is similar to the direct transition in (a).

In a direct adsorption process the threshold of continuous optical adsorption at frequency  $w_g$  measures the band gap. A photon is adsorbed by the crystal with the creation of an electron and a hole.

In the indirect absorption process the minimum energy gap of the band structure involves electrons and holes seperated by a substantial wavevector  $\mathbf{k}$ .

Optical measurements determines whether the gap is direct or indirect.
 Ex: The band edges in Ge and in Si are connected by indirect transitions,
 the band edges in InSb and GaAs are connected by a direct transition.

□ HgTe and HgSe are semimetals and have negative gaps- the conduction and valence bands overlap.

### **EQUATIONS OF MOTION**

- We derive the equation of motion of an electron in an energy band.
- We look at the notion of a wave packet in an applied electric field.
- Suppose that the wave packet is made up of wavefunctions assembled near a particular wavevector k

### **EQUATIONS OF MOTION**

The frequency associated with a wavefunction of energy;

$$v_{g} = \hbar^{-1} d\epsilon / dk$$
 or  $\mathbf{v} = \hbar^{-1} \nabla_{\mathbf{k}} \epsilon (\mathbf{k})$ 

$$v_{\rm g} = d\omega/dk$$
 The group velocity

The work done on the electron by the electric field **E** in the time interval is:

$$\delta \epsilon = -eEv_g \, \delta t$$

External force **F** is:

$$\hbar \frac{d\mathbf{k}}{dt} = \mathbf{F} \ .$$

#### **EQUATIONS OF MOTION**

We examine the transfer of momentum between the electron and the lattice when the state **k** of the electron is changed to  $\mathbf{k} + \Delta \mathbf{k}$  by the application of an external force. We imagine an insulating crystal electrostatically neutral except for a single electron in the state **k** of an otherwise empty band.

We suppose that a weak external force is applied for a time interval such that the total impulse given to the entire crystal system is  $\mathbf{J} = \int \mathbf{F} dt$ . If the conduction electron were free  $(m^* = m)$ , the total momentum imparted to the crystal system by the impulse would appear in the change of momentum of the conduction electron:

$$\mathbf{J} = \Delta \mathbf{p}_{\text{tot}} = \Delta \mathbf{p}_{\text{el}} = \hbar \Delta \mathbf{k}$$