Rubber Production Methods:

In 1906, it was found that aniline and other amines accelerated sulfur vulcanization. Since that time, emphasis has been placed on nitrogen- and sulfurcontaining organic compounds.

Important milestones along the way have been the discovery of dithiocarbamates in 1918, of 2 mercaptobenzothiazole (MBT) in 1921, and of benzothiazole sulfenamides in 1937.

Accelerators and accelerator systems are chosen on

- the basis of their ability to control the following processing/performance properties of I. Time delay before vulcanization begins (Scorch compounds: Safety)
- 2. Speed of the vulcanization reaction after it is initiated (cure rate)
- 3. Extent of the vulcanization after the vulcanization reaction is complete
- (state of cure)
- 4. Other factors such as green stock storage stability,
- fiber or steel
- adhesion, and bloom tendency

Abbreviation	Chemical name	Flexsys trade name			
CBS	N-Cyclohexyl-2-benzothiazolesulfenamide	Santocure CBS	There	are	many
CTP	N-(Cyclohexylthio)phthalimide	Santogard PVI			-
DBTU	N,N'-Dibutylthiourea	0	classes	5	of
DCBS	N,N-Dicyclohexyl-2-benzothiazolesulfenamide	Santocure DCBS			
DETU	N,N'-Diethythiourea		compo	unds	that
DOTG	Di-o-tolylguanidine		compo	anas	criac
DPG	Diphenylguanidine	Perkacit DPG	6 20	corvo	26
DPTH	Dipentamethylenethiuram hexasulfide		Call	Serve	as
DTDM	Dithiodimorpholine	Sulfasan DTDM			
ETU	Ethylenethiourea		accele	rators	in
MBS	2-(Morpholinothio)benzothiazolesulfenamide	Santocure MBS			
MBT	2-Mercaptobenzothiazole	Perkacit MBT	vulcan	ization	
MBTS	Benzothiazyl disulfide	Perkacit MBTS	varcarr		
NDPA	N-Nitrosodiphenylamine		nracac		26
PEG	Polyethylene glycol		proces	ses	as
TBBS	N-t-Butyl-2-benzothiazolesulfenamide	Santocure TBBS			
TDEDC	Tellurium diethyldithiocarbamate	Perkacit TDEC	shown	in Tab	le 1.
TETD	Tetraethylthiuram disulfide	Perkacit TETD			
TMQ	Polymerized 2,2,4-trimethyl-1,2-dihydroquinoline	Flectol TMQ			
TMTD	Tetramethylthiuram disulfide	Perkacit TMTD			
TMTM	Tetramethylthiuram monosulfide	Perkacit TMTM			
TMTU	Trimethylthiourea				
ZBDC	Zinc dibutyldithiocarbamate	Perkacit ZDBC			
ZBPD	Zinc o-di-n-butylphosphorodithioate	Vocol ZBPD			
ZDEC	Zinc diethyldithiocarbamate	Perkacit ZDEC			
ZDMC	Zinc dimethyldithiocarbamate	Perkacit ZDMC			
ZMBT	Zinc salt of 2-mercaptobenzothiazole	Perkacit ZMBT			
6PPD	N-1,3-Dimethylbutyl-N-phenyl-p-phenylenediamine	Santoflex 6PPD			
ETPT	Bis(diethyl thiophosphoryl) trisulfide				
BDITD	Bis(diisopropylthiophosphoryl) disulfide				

Table 1 Recognized Industry Abbreviations for Accelerators

Class	Response speed		Acronyms			
Aldehyde-amine	Slow					
Guanidines	Medium		DI	DPG, DOTG		
Thiazoles	Semi-fast		Μ	MBT, MBTS		
Sulfenamides	Fast, delayed action		CI	CBS, TBBS, MBS, DCBS		
Dithiophosphates	Fast		Zł	ZBPD		
Thiurams	Very fast		TN	TMTD, TMTM, TETD		
Dithiocarbamates	Very fast		ZDMC, ZDBC			
Accelerators	can b	e clas	sified	chemica	ally a	nc
functionally.	The p	rincipal	chem	nical cla	asses	0
accelerators	in comm	nercial	use to	day are	listed	ir
Table 2.						

ACTIVATORS

The most organic accelerators and cure systems requires the use of inorganic and organic activators. Zinc oxide is the most important inorganic activator, bast sthew moted live, oxides have adsorvested nd effect on the extent of cure achievable in accelerated sulfur vulcanization. The most important organic activators are fatty acids, although weak amines, guanidines, ureas, thioureas, amides, polyalcohols, and amino alcohols are also used.

The Mechanism of Zinc-Mediated

Accelerated Sulfur fact, the most active contain the -N=C=S-H functionality. This is the common structural unit found in all of the 2-mercaptosubstituted nitrogen heterocyclic

Figure 9 Generalized structures of sulfurating intermediates. Figure 9 Generalized structures of sulfurating intermediates. Sulfur may be activated by reaction of the amine with the sulfur molecules, which generates ammonium polysulfide anions or polysulfidic radical anions. These combine or react to form amine polysulfides or alkylammonium polysulfides, which have been proposed as intermediates in vulcanization.

sulfur-amine reaction product subsequently reacts with the

- The four parameters act on the rate of vulcanization.
- 1. Electron density in the Zn-S bond
- (electron-electron repulsion)
- 2. Electron density in the C=N bond
- (electron-electron repulsion)
- 3. Interaction parameter for an N-H bond
- (measure of the quality
- of interaction of the amine ligand wit
- 4. Molecular surface area

Today use a combination of zinc oxide and stearic acid as the activating system. In general the use of the activators zinc oxide and stearic acid improves the rate and efficiency of accelerated sulfur vulcanization. In the absence of an accelerator, the activators zinc oxide and stearic acid are ineffective in increasing the number of cross-links produced.

The addition of zinc oxide to the accelerated stock as the only activator produces a dramatic effect and a well-cured stock. This demonstrates the critical role of zinc in accelerated sulfur vulcanization. Most natural rubbers and some synthetics contain enough fatty acids to form soluble zinc salts (from added zinc oxide) that interact with the accelerators.

Stearic acid

Sulfenamide-accelerated cures will release free amine, which produces a soluble zinc amine complex from the zinc oxide.

Santogard PVI (N-cyclohexylthiophthalimide) was the first rubber chemical able to delay the onset of sulfur vulcanization in a predictable manner. Santogard PVI is almost the "ideal" retarder, because small additions (0.1–0.5 phr) produce large increases in processing safety Unlike other retarders (e.g., N-nitrosodiphenylamine), Santogard PVI will not decompose over the normal range of processing and curing temperatures.

Although the highest response occurs with sulfenamides, Santogard PVI is active with nearly all accelerators for sulfur-curable elastomers but normally ineffective with peroxide, resin, or metal oxide curing systems. It is not normally used in latex formulations. Santogard PVI is most effective with the fastest curing polymers, and an approximate orde

NR > NBR > SBR > EPDM > IIR

