Physics-2: Electricity \& Magnetism

Electric Potential-Cont. Potential Due to Continuous Charge Distribution Problems and Solutions

Assoc. Prof. Dr. Fulya Bağcı 26.03.2020

Ankara University, Department of Physics Engineering

Problems

Section 25.2-Q.5)

A uniform electric field of magnitude $325 \mathrm{~V} / \mathrm{m}$ is directed in the negative y direction in Figure P25.5. The coordinates of point A are $(-0.2,-0.3) \mathrm{m}$ and those of point B are $(0.4,0.5) \mathrm{m}$. Calculate the electric potential difference $V_{B}-V_{A}$ using the dashed line path.

$$
\begin{gathered}
V_{B}-V_{A}=-\int_{A}^{B} E * d s=-\int_{A}^{C} E * d s-\int_{C}^{B} E * d s \\
V_{B}-V_{A}=\left(-E \cos 180^{\circ}\right) \int_{-0.300}^{0.500} d y-\left(E \cos 90.0^{\circ}\right) \int_{-0.200}^{0.400} d x \\
V_{B}-V_{A}=(325)(0.800)=+260 \mathrm{~V}
\end{gathered}
$$

Figure P25.5

Section 25.2-Q.13)

An insulating rod having linear charge density $\lambda=40.0 \mu \mathrm{C} / \mathrm{m}$ and linear mass density $\mu=0.100 \mathrm{~kg} / \mathrm{man}_{\mathrm{sin}} \mathrm{m}$ released from rest in a uniform electric field $E=100 \mathrm{~V} / \mathrm{m}$ directed perpendicular to the rod (Fig. P25.13). Determine the speed of the rod after it has traveled 2.00 m .

Assoc. Prof. Dr. Fulya Bagci

Section 25.3-Q.19)
19. Given two particles with $2.00 \mu \mathrm{C}$ charges, as shown in Figure $P 25.16$, and a positive test charge $q=1.28 \times 10^{-18}$ the origin, (a) what is the net force exerted by the two $2.00 \mu \mathrm{C}$ charges on the test charge q ? (b) What is the electric field at the origin due to the two $2.00 \mu \mathrm{C}$ charges? (c) What is the electric potential at the origin due to the two 2.00 $\mu \mathrm{C}$.

Figure P25.16
(a) Since the charges are equal and placed symmetrically, $\quad F=0$,
(b) \quad Since $F=q E=0, ~ E=0.00 \mu \mathrm{C}$

FIG. P25.16
(c) $\quad V=2 k_{e} \frac{q}{r}=2\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(\frac{2.00 \times 10^{-6} \mathrm{C}}{0.800 \mathrm{~m}}\right)$
$V=4.50 \times 10^{4} \mathrm{~V}=45.0 \mathrm{kV}$
electric potential at the origin

Section 25.4-Q.37)

The potential in a region between $x=0$ and $x=6.00 \mathrm{~m}$ is $V=a+b x$, where $a=10.0 \mathrm{~V}$ and $b=-7.00 \mathrm{~V} / \mathrm{m}$. Determine (a) the potential at $x=0,3.00 \mathrm{~m}$, and 6.00 m , and (b) the magnitude and direction of the electric field at $x=0,3.00 \mathrm{~m}$, and 6.00 m .

$$
V=a+b x=10.0 \mathrm{~V}+(-7.00 \mathrm{~V} / \mathrm{m}) x
$$

(a)

$$
\begin{array}{ll}
\text { At } x=0, & V=10.0 \mathrm{~V} \\
\text { At } x=3.00 \mathrm{~m}, & V=-11.0 \mathrm{~V} \\
\text { At } x=6.00 \mathrm{~m}, & V=-32.0 \mathrm{~V}
\end{array}
$$

(b)

$$
E=-\frac{d V}{d x}=-b=-(-7.00 \mathrm{~V} / \mathrm{m})=7.00 \mathrm{~N} / \mathrm{C} \text { in the }+x \text { direction }
$$

Assoc. Prof. Dr. Fulya Bagci

Section 25.5-Q.47)

A wire having a uniform linear charge density λ is bent into the shape shown in Figure P25.47. Find the electric potential at point O.

Figure P25.47

$$
\text { P25.47 } \begin{aligned}
V & =k_{e} \int_{\text {all charge }} \frac{d q}{r}=k_{e} \int_{-3 R}^{-R} \frac{\lambda d x}{-x}+k_{e} \int_{\text {semicircle }} \frac{\lambda d s}{R}+k_{e} \int_{R}^{3 R} \frac{\lambda d x}{x} \\
V & =-\left.k_{e} \lambda \ln (-x)\right|_{-3 R} ^{-R}+\frac{k_{e} \lambda}{R} \pi R+\left.k_{e} \lambda \ln x\right|_{R} ^{3 R} \\
V & =k_{e} \lambda \ln \frac{3 R}{R}+k_{e} \lambda \pi+k_{e} \lambda \ln \frac{3 R}{R}=k_{e} \lambda(\pi+2 \ln 3)
\end{aligned}
$$

Section 25.6-Q.50)

A spherical conductor has a radius of 14.0 cm and charge of $26.0 \mu \mathrm{C}$. Calculate the electric field and the electric potential (a) $r=10.0 \mathrm{~cm}$, (b) $r=20.0 \mathrm{~cm}$, and (c) $r=14.0 \mathrm{~cm}$ from the center.
(a)

$$
\begin{aligned}
& E=0, \\
& V=\frac{k_{e} q}{R}=\frac{\left(8.99 \times 10^{9}\right)\left(26.0 \times 10^{-6}\right)}{0.140}=1.67 \mathrm{MV}
\end{aligned}
$$

(b) $E=\frac{k_{e} q}{r^{2}}=\frac{\left(8.99 \times 10^{9}\right)\left(26.0 \times 10^{-6}\right)}{(0.200)^{2}}=5.84 \mathrm{MN} / \mathrm{C}$ away

$$
V=\frac{k_{e} q}{R}=\frac{\left(8.99 \times 10^{9}\right)\left(26.0 \times 10^{-6}\right)}{0.200}=1.17 \mathrm{MV}
$$

(c) $E=\frac{k_{e} q}{R^{2}}=\frac{\left(8.99 \times 10^{9}\right)\left(26.0 \times 10^{-6}\right)}{(0.140)^{2}}=11.9 \mathrm{MN} / \mathrm{C}$ away

$$
V=\frac{k_{e} q}{R}=1.67 \mathrm{MV}
$$

Section 25.8-Q.75)

(a) A uniformly charged cylindrical shell has total charge Q, radius R, and height h. Determine the electri potential at a point a distance d from the right end of the cylinder, as shown in Figure P25.75. (Suggestion: use the result of Example 25.5 by treating the cylinder as a collection of ring charges.) (b) What If? Use the result of Example 25.6 to solve the same problem for a solid cylinder.

Assoc. Prof. Dr. Fulya Bagci

(b) A disk of thickness $d x$ has charge $\frac{Q d x}{h}$ and charge-per-area $\frac{Q d x}{\pi R^{2} h}$. According Ad ewett Example 25.6, it creates potential

$$
d V=2 \pi k_{e} \frac{Q d x}{\pi R^{2} h}\left(\sqrt{x^{2}+R^{2}}-x\right)
$$

Integrating,

$$
\begin{equation*}
V=2 \pi k_{e} \sigma\left[\left(x^{2}+a^{2}\right)^{1 / 2}-x\right] \tag{25.23}
\end{equation*}
$$

$$
\begin{aligned}
& V=\int_{d}^{d+h} \frac{2 k_{e} Q}{R^{2} h}\left(\sqrt{x^{2}+R^{2}} d x-x d x\right)=\frac{2 k_{e} Q}{R^{2} h}\left[\frac{1}{2} x \sqrt{x^{2}+R^{2}}+\frac{R^{2}}{2} \ln \left(x+\sqrt{x^{2}+R^{2}}\right)-\frac{x^{2}}{2}\right]_{d}^{d+h} \\
& V=\frac{k_{e} Q}{R^{2} h}\left[(d+h) \sqrt{(d+h)^{2}+R^{2}}-d \sqrt{d^{2}+R^{2}}-2 d h-h^{2}+R^{2} \ln \left(\frac{d+h+\sqrt{(d+h)^{2}+R^{2}}}{d+\sqrt{d^{2}+R^{2}}}\right)\right]
\end{aligned}
$$

Assoc. Prof. Dr. Fulya Bagci

