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In this chapter, we introduce the first of three (Capacitors, resistors and inductors) simple circuit 

elements that can be connected with wires to form an electric circuit. 

Capacitors are used to tune the frequency of radio receivers, as filters in power supplies,as

energy-storing devices in electronic flash units, etc.

Consider two conductors as shown in Figure. Such a

combination of two conductors is called a capacitor. The

conductors are called plates. If the conductors carry

charges of equal magnitude and opposite sign, a potential

difference ΔV exists between them.

The proportionality constant depends on the shape and

separation of the conductors.

The capacitance C of a capacitor is defined as, 

C is always a positive quantity. The SI unit of C is Farad.

Typical devices have capacitances ranging from microfarads to picofarads.

Figure from BOOK - Physics For
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26.2 Calculating Capacitance
The capacitance of a pair of conductors can be parallel-plates, concentric cylinders and concentric

spheres. Let us assume now that the charged conductors are separated by vacuum.

Parallel-Plate Capacitors

Two parallel, metallic plates of equal area A are separated 

by a distance d as shown in Figure 26.2. One plate carries 

a charge +Q , and the other carries a charge -Q.

The surface charge density on each plate is:

Figure 26.2
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We find that the capacitance is
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That is, the capacitance of a parallel-plate capacitor is proportional to the area of its plates and 

inversely proportional to the plate separation.

Figure from BOOK - Physics For Scientists And Engineers 6E By
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Example 26.1 The Cylindrical Capacitor

A solid cylindrical conductor of radius a and charge Q is coaxial with a cylindrical shell of neglible thickness, radius b>a, 

and charge –Q (Figure 26.4a). Find the capacitance of this cylindrical capacitor if its length is l.
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An example of this type of geometric arrangement is a coaxial cable.

Figure from BOOK - Physics For Scientists And Engineers 6E By
Serway And Jewett, page 801



Example 26.2 The Spherical Capacitor

A spherical capacitor consists of a spherical conducting shell of radius b and charge -Q concentric with a smaller

conducting sphere of radius a and charge Q. Find the capacitance of this device.

The electric field between the spheres is,

The potential difference between the conductors is,
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If the radius b of the outer sphere 

approaches infinity, what does the 

capacitance become?
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The capacitance of an 

isolated spherical

conductor

Figure from BOOK - Physics For Scientists And
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Parallel Combination
Two capacitors connected as shown in Figure 26.7a are known as a parallel combination of capacitors. 

Figure 26.7b shows a circuit diagram for this combination of capacitors. The left plates of the capacitors

are connected to the positive terminal of the battery by a conducting wire and are therefore both at the

same electric potential as the positive terminal. Likewise, the right plates are at the same potential as the

negative terminal. Therefore,

1 2V V V    

1 2totQ Q Q 

The total charge Q stored by the two capacitors is

1 2eqC V C V C V    

1 2eqC C C  (parallel combination)

For three or more capacitors connected in parallel, 

1 2 3 4 ...eqC C C C C    

The equivalent capacitance is greater than any of the individual capacitances.

26.3 Combination of Capacitors

Figure from BOOK - Physics For
Scientists And Engineers 6E By
Serway And Jewett, page 803



Series Combination
Two capacitors connected as shown in Figure 26.10a and the equivalent circuit diagram in Figure 26.10b

are known as a series combination of capacitors. The left plate of capacitor 1 and the right plate of

capacitor 2 are connected to the terminals of a battery. When the battery is connected, all the right plates

end up with a charge +Q , and all the left plates end up with a charge –Q. Therefore, the charges on

capacitors connected in series are the same.
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For three or more capacitors connected in series, 
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eqC C C C C
     The equivalent capacitance is less than any 

of the individual capacitances.
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Example 26.3 Equivalent Capacitance

Find the equivalent capacitance between a and b for the combination of capacitors shown in Figure 26.9a. 

All capacitances are in microfarads.

Find the voltage across and the charge on each capacitor.

Figure from BOOK - Physics For Scientists And Engineers 6E By
Serway And Jewett page 806



26.4 Energy Stored in a Charged Capacitor
• A capacitor can store energy. When the switch is closed, some of the chemical potential energy in the battery is

transformed to electric potential energy associated with the separation of positive and negative charges on the plates.

• Recall the definition of the electric potential V=U/q

• The work necessary to transfer an increment of charge dq from the plate carrying charge +q to the plate carrying

charge -q (which is at the higher electric potential) is:
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• The total work required to charge the capacitor from q = 0 to some final charge q = Q is:

• The work done in charging the capacitor appears as electric potential energy U stored in the capacitor

is:



• This result applies to any capacitor, regardless of its geometry. 

• We see that for a given capacitance, the stored energy increases as the charge increases and as the potential

difference increases. 

• In practice, there is a limit to the maximum energy (or charge) that can be stored because, at a sufficiently 

great value of ΔV, discharge ultimately occurs between the plates.

• For a parallel-plate capacitor, ΔV=Ed and C=0A/d, so the the potential energy stored in a charged capacitor

becomes:
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• Because the volume occupied by the electric field is Ad, the energy per unit volume known as the energy 

density, is:
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• The energy density in any electric field is proportional to the square of the magnitude of the electric field 

at a given point.



26.5 Capacitors with Dielectrics

A dielectric is a nonconducting material, such as rubber, glass, or waxed paper. When a dielectric is

inserted between the plates of a capacitor, the capacitance increases. If the dielectric completely fills the

space between the plates, the capacitance increases by a dimensionless factor κ, which is called the

dielectric constant of the material. The dielectric constant varies from one material to another.

The voltages with and without the dielectric are related by the factor κ as follows:
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Because the charge Q0 on the capacitor does not change, we conclude that the capacitance must change 

to the value,
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That is, the capacitance increases by the factor κ when the dielectric completely fills the region between the

plates.

Figure from BOOK - Physics For Scientists And Engineers 6E By
Serway And Jewett page 812



For a parallel-plate capacitor, we can express the capacitance when the capacitor is filled with a dielectric as, 0 A
C

d




In practice, the lowest value of d is limited by the electric discharge that could occur through the dielectric medium

separating the plates. For any given separation d, the maximum voltage that can be applied to a capacitor without causing

a discharge depends on the dielectric strength (maximum electric field) of the dielectric.

We see that a dielectric provides the following advantages:

• Increase in capacitance

• Increase in maximum operating voltage

• Possible mechanical support between the plates, which allows the plates to be close together without touching, thereby

decreasing d and increasing C.

Figure from BOOK - Physics For Scientists And Engineers 6E By
Serway And Jewett page 813



Example 26.6 A Paper-Filled Capacitor

A parallel-plate capacitor has plates of dimensions 2.0 cm by 3.0 cm separated by a 1.0-mm thickness 

of paper.

(A) Find its capacitance.

(B) What is the maximum charge that can be placed on the capacitor?



26.6 Electric Dipole in an Electric Field

The electric dipole moment of this configuration is defined as the vector 𝒑 directed from -q toward +q along the line 

joining the charges and having magnitude

Now suppose that an electric dipole is placed in a uniform electric

field E, as shown in Figure 26.22. Let us imagine that the dipole

moment makes an angle θ with the field. The net force on the dipole is

zero. However, the two forces produce a net torque on the dipole; as a

result, the dipole rotates in the direction that brings the dipole moment

vector into greater alignment with the field. This force tends to

produce a clockwise rotation.

Figure 26.22

Because F = qE and p = 2aq, we can express τ as

Figure from BOOK - Physics For Scientists And Engineers 6E By
Serway And Jewett page 815



We can determine the potential energy of the system—an electric dipole in an external electric field. The

work dW required to rotate the dipole through an angle dθ is dW = τdθ. Because τ = pEsinθ and because the

work results in an increase in the potential energy U, we find that for a rotation from θi to θf the change in

potential energy of the system is,

The term that contains cosθi is a constant that depends on the initial orientation of the dipole. It is

convenient for us to choose a reference angle of θi = 90°, so that cosθi = cos 90° = 0. Furthermore, let us

choose Ui= 0 at θi = 90° as our reference of potential energy. Hence, we can express a general value of U

= Uf as

We can write this expression for the potential energy of a dipole in an electric field as the dot product of 

the vectors p and E:



 The torque acting on an electric dipole in a uniform electric field E is: 𝝉 = 𝒑 × 𝑬
 The potential energy of the system of an electric dipole in a uniform external electric field E is: 𝑈 = −𝒑𝑬


