
PEN203
C++ Pointers

1

C++ How to Program
Deitel & Deitel

 Pointer Variable Definitions and Initialization

 Pointer Operators

 Passing Arguments to Functions by Reference

 Using const Qualifier with Pointers

 sizeof operator

 Pointer Expressions and Pointer Arithmetic

 Relationship between Pointers and Arrays

 Arrays of Pointers

2

Outline

Pointer Variable Definitions and Initialization

3

 Pointer variables store memory addresses as

their values

 Pointer variables contain an address of a

variable that has a specific value (indirect

reference).

Pointer Variable Definitions and Initialization

4

Pointer Variable Definitions and Initialization

5

 Pointer variables store memory addresses as

their values

 Pointer variables contain an address of a

variable that has a specific value (indirect

reference).

 Pointer definition:

 int *myptr; statement defines a pointer of type int.

 You may initialize pointers to 0, NULL or an
address.

Pointer Operators

6

 & (address operator)

 returns memory address of operand

int a=3;

int ptr;

ptr=&a;

 With these declarations and assignments, ptr
points to a.

Pointer Operators

7

 * (dereferencing operator)

 Returns an alias of what its operand points to

 * ptr returns a in our example

 * can be used for assignment

 *ptr= 10 modifies the value of a to 10

 Dereferenced pointer must be a left value.

 * and & are inverses

Pointer Operators

8

 1 // Fig. 5.4: fig05_04.cpp

 2 // Using the & and * operators.

 3 #include <iostream>

 4

 5 using std::cout;

 6 using std::endl;

 7

 8 int main()

 9 {

 10 int a; // a is an integer

 11 int *aPtr; // aPtr is a pointer to an integer

 12

 13 a = 7;

 14 aPtr = &a; // aPtr assigned address of a

 15

 16 cout << "The address of a is " << &a

 17 << "\nThe value of aPtr is " << aPtr;

 18

 19 cout << "\n\nThe value of a is " << a

 20 << "\nThe value of *aPtr is " << *aPtr;

 21

 22 cout << "\n\nShowing that * and & are inverses of "

 23 << "each other.\n&*aPtr = " << &*aPtr

 24 << "\n*&aPtr = " << *&aPtr << endl;

 25

Pointer Operators

9

 26 return 0; // indicates successful termination

 27

 28 } // end main

The address of a is 0012FED4

The value of aPtr is 0012FED4

The value of a is 7

The value of *aPtr is 7

Showing that * and & are inverses of each other.

&*aPtr = 0012FED4

*&aPtr = 0012FED4

Passing Arguments to Functions by Reference

10

 Call functions by reference using pointer

arguments

 To pass address of an argument, & operator

will be used.

 Using * operator in function, you can modify

the original value.

 Arrays are not passed with & operator: array

name is already an address.

Passing Arguments to Functions by Reference

11

 1 // Fig. 5.7: fig05_07.cpp

 2 // Cube a variable using pass-by-reference

 3 // with a pointer argument.

 4 #include <iostream>

 5

 6 using std::cout;

 7 using std::endl;

 8

 9 void cubeByReference(int *); // prototype

 10

 11 int main()

 12 {

 13 int number = 5;

 14

 15 cout << "The original value of number is " << number;

 16

 17 // pass address of number to cubeByReference

 18 cubeByReference(&number);

 19

 20 cout << "\nThe new value of number is " << number << endl;

 21

 22 return 0; // indicates successful termination

 23

 24 } // end main

 25

Passing Arguments to Functions by Reference

12

 26 // calculate cube of *nPtr; modifies variable number in main
 27 void cubeByReference(int *nPtr)
 28 {
 29 *nPtr = *nPtr * *nPtr * *nPtr; // cube *nPtr
 30

 31 } // end function cubeByReference

The original value of number is 5

The new value of number is 125

