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 Pointer variables store memory addresses as 

their values

 Pointer variables contain an address of a 

variable that has a specific value (indirect 

reference).
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 Pointer variables store memory addresses as 

their values

 Pointer variables contain an address of a 

variable that has a specific value (indirect 

reference).

 Pointer definition:

 int *myptr; statement defines a pointer of type int.

 You may initialize pointers to 0, NULL or an 
address.
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 & (address operator)

 returns memory address of operand

int a=3;

int ptr;

ptr=&a;

 With these declarations and assignments, ptr 
points to a.
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 * (dereferencing operator)

 Returns an alias of what its operand points to

 * ptr returns a in our example

 * can be used for assignment

 *ptr= 10 modifies the value of a to 10

 Dereferenced pointer must be a left value.

 * and & are inverses
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 1      // Fig. 5.4: fig05_04.cpp

 2      // Using the & and * operators.

 3      #include <iostream>

 4      

 5      using std::cout;

 6      using std::endl;

 7      

 8      int main()

 9      {

 10    int a;      // a is an integer

 11    int *aPtr;  // aPtr is a pointer to an integer

 12    

 13    a = 7;

 14    aPtr = &a;  // aPtr assigned address of a

 15    

 16    cout << "The address of a is " << &a

 17    << "\nThe value of aPtr is " << aPtr;

 18    

 19    cout << "\n\nThe value of a is " << a

 20    << "\nThe value of *aPtr is " << *aPtr;

 21    

 22    cout << "\n\nShowing that * and & are inverses of "

 23    << "each other.\n&*aPtr = " << &*aPtr

 24    << "\n*&aPtr = " << *&aPtr << endl;

 25    
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 26    return 0;  // indicates successful termination

 27    

 28    } // end main

The address of a is 0012FED4

The value of aPtr is 0012FED4

The value of a is 7

The value of *aPtr is 7

Showing that * and & are inverses of each other.

&*aPtr = 0012FED4

*&aPtr = 0012FED4
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 Call functions by reference using pointer 

arguments

 To pass address of an argument, & operator 

will be used.

 Using * operator in function, you can modify 

the original value.

 Arrays are not passed with & operator: array 

name is already an address.
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 1      // Fig. 5.7: fig05_07.cpp

 2      // Cube a variable using pass-by-reference 

 3      // with a pointer argument.

 4      #include <iostream>

 5      

 6      using std::cout;

 7      using std::endl;

 8      

 9      void cubeByReference( int * );   // prototype

 10    

 11    int main()

 12    {

 13    int number = 5;

 14    

 15    cout << "The original value of number is " << number;

 16    

 17    // pass address of number to cubeByReference

 18    cubeByReference( &number );

 19    

 20    cout << "\nThe new value of number is " << number << endl;

 21    

 22    return 0;  // indicates successful termination

 23    

 24    } // end main

 25    
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 26    // calculate cube of *nPtr; modifies variable number in main
 27    void cubeByReference( int *nPtr )                           
 28    {                                                           
 29    *nPtr = *nPtr * *nPtr * *nPtr;  // cube *nPtr            
 30    

 31    } // end function cubeByReference                           

The original value of number is 5

The new value of number is 125


