
PEN203
C++ Pointers

1

C++ How to Program
Deitel & Deitel

Using const Qualifier with Pointers

2

 const qualifier is used if you do not need to

modify a variable

 Any attemp to change a const variable

causes a syntax error.

 const pointers must be initialized when

declared. Can not be changed to point

another location during program execution.

Using const Qualifier with Pointers

3

 int *const ptr = &a;

 Constant pointer to an integer

 const int *ptr = &a;

 Modifiable pointer to a constant integer

 const int *const ptr = &a;

 Constant pointer to a constant integer.

sizeof Operator

4

 sizeof returns the size of operand in bytes.

 Sizeof can be used variable names and type

names.

 Examples:

 int x=5;

 sizeof(int) and sizeof(x) return the same value
that is the number of bytes allocated for integers.

Pointer Expressions and Pointer Arithmetic

5

 Arithmetic operations on pointers

 Increment/decrement pointer

 Add an integer to a pointer

 A pointer can be subtracted from each other

 5 element array:

int ar[5];

int *ptr=&ar[0];

if the address of ar[0] is 2000, ptr+=2; sets

ptr to 2008.

Pointer Expressions and Pointer Arithmetic

6

 5 element array: (subtraction)

int ar[5];

int *ptr1=&ar[1];

int *ptr2=&ar[3];

ptr2-ptr1 returns 2

 Pointer comparison (<, ==, >)

 Used to find which pointer points to greater
numbered array element.

 Pointers of the same type can be assigned to

each other.

Relationship between Pointers and Arrays

7

 Array names are constant pointers.

int ar[5];

int *ptr;

ptr=ar; or ptr=&ar[0] assigns the address of

first element on integer array ar to ptr.

Relationship between Pointers and Arrays

8

 Array element ar[2] can be accessed:

 *(ptr+2) pointer/offset notation

 ptr[2] pointer/subscript notation

 Also can be accessed using pointer arithmetic
on the array itself *(ar+3)

 You can not modify an array name with

pointer arithmetic.

Relationship between Pointers and Arrays

9

 1 // Fig. 5.20: fig05_20.cpp

 2 // Using subscripting and pointer notations with arrays.

 3

 4 #include <iostream>

 5

 6 using std::cout;

 7 using std::endl;

 8

 9 int main()

 10 {

 11 int b[] = { 10, 20, 30, 40 };

 12 int *bPtr = b; // set bPtr to point to array b

 13

 14 // output array b using array subscript notation

 15 cout << "Array b printed with:\n"

 16 << "Array subscript notation\n";

 17

 18 for (int i = 0; i < 4; i++)

 19 cout << "b[" << i << "] = " << b[i] << '\n';

 20

 21 // output array b using the array name and

 22 // pointer/offset notation

 23 cout << "\nPointer/offset notation where "

 24 << "the pointer is the array name\n";

 25

Relationship between Pointers and Arrays

10

 26 for (int offset1 = 0; offset1 < 4; offset1++)
 27 cout << "*(b + " << offset1 << ") = "
 28 << *(b + offset1) << '\n';
 29

 30 // output array b using bPtr and array subscript notation
 31 cout << "\nPointer subscript notation\n";
 32

 33 for (int j = 0; j < 4; j++)
 34 cout << "bPtr[" << j << "] = " << bPtr[j] << '\n';
 35

 36 cout << "\nPointer/offset notation\n";
 37

 38 // output array b using bPtr and pointer/offset notation
 39 for (int offset2 = 0; offset2 < 4; offset2++)
 40 cout << "*(bPtr + " << offset2 << ") = "
 41 << *(bPtr + offset2) << '\n';
 42

 43 return 0; // indicates successful termination
 44

 45 } // end main

Relationship between Pointers and Arrays
11

 Array b printed with:



 Array subscript notation

 b[0] = 10

 b[1] = 20

 b[2] = 30

 b[3] = 40



 Pointer/offset notation where the pointer is the array name

 *(b + 0) = 10

 *(b + 1) = 20

 *(b + 2) = 30

 *(b + 3) = 40

 Pointer subscript notation

 bPtr[0] = 10

 bPtr[1] = 20

 bPtr[2] = 30

 bPtr[3] = 40



 Pointer/offset notation

 *(bPtr + 0) = 10

 *(bPtr + 1) = 20

 *(bPtr + 2) = 30

 *(bPtr + 3) = 40

Arrays of Pointers

12

 Arrays can contains pointers

 Example: an array of strings

char *suit[4] = { "Hearts", "Diamonds",

"Clubs", "Spades" };

 An important issue here is the strings are not

actually placed in the array. Only pointers to

first character of strings are stored.

