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 Characters

 Character constant is an int value represented as 
a character

 Strings

 A series of characters considered as a single unit

 String literal is written in double quotes

"Hello"

 Basically strings are arrays of characters

 The actual value of string is the address of first 

character
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 String definitions

 Define as a character array or a variable of type 
char *

char color[] = "blue";

char *colorPtr = "blue";

 Strings represented as character arrays end with 
‘\0’

 color variable has 4+1=5 elements

 To input strings using scanf:
 cin>>word;
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 1 /* Fig. 8.2: fig08_02.c 

 2    Using functions isdigit, isalpha, isalnum, and isxdigit */ 

 3 #include <stdio.h> 

 4 #include <ctype.h> 

 5   

 6 int main( void ) 

 7 {  

 8    printf( "%s\n%s%s\n%s%s\n\n", "According to isdigit: ", 

 9        isdigit( '8' ) ? "8 is a " : "8 is not a ", "digit", 

10        isdigit( '#' ) ? "# is a " : "# is not a ", "digit" ); 

11  

12    printf( "%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",  

13        "According to isalpha:", 

14        isalpha( 'A' ) ? "A is a " : "A is not a ", "letter", 

15        isalpha( 'b' ) ? "b is a " : "b is not a ", "letter", 

16        isalpha( '&' ) ? "& is a " : "& is not a ", "letter", 

17        isalpha( '4' ) ? "4 is a " : "4 is not a ", "letter" ); 

18  
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19    printf( "%s\n%s%s\n%s%s\n%s%s\n\n",  

20        "According to isalnum:", 

21        isalnum( 'A' ) ? "A is a " : "A is not a ",  

22        "digit or a letter", 

23        isalnum( '8' ) ? "8 is a " : "8 is not a ",  

24        "digit or a letter", 

25        isalnum( '#' ) ? "# is a " : "# is not a ",  

26        "digit or a letter" ); 

27  

28    printf( "%s\n%s%s\n%s%s\n%s%s\n%s%s\n%s%s\n",  

29        "According to isxdigit:", 

30        isxdigit( 'F' ) ? "F is a " : "F is not a ",  

31        "hexadecimal digit", 

32        isxdigit( 'J' ) ? "J is a " : "J is not a ",  

33        "hexadecimal digit", 

34        isxdigit( '7' ) ? "7 is a " : "7 is not a ",  

35        "hexadecimal digit", 

36        isxdigit( '$' ) ? "$ is a " : "$ is not a ",   
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37        "hexadecimal digit", 

38        isxdigit( 'f' ) ? "f is a " : "f is not a ",  

39        "hexadecimal digit" ); 

40  

41    return 0; /* indicates successful termination */ 

42  

43 } /* end main */ 

  
According to isdigit: 
8 is a digit 
# is not a digit 
 
According to isalpha: 
A is a letter 
b is a letter 
& is not a letter 
4 is not a letter 
 
According to isalnum: 
A is a digit or a letter 
8 is a digit or a letter 
# is not a digit or a letter 
 
According to isxdigit: 
F is a hexadecimal digit 
J is not a hexadecimal digit 
7 is a hexadecimal digit 
$ is not a hexadecimal digit 
f is a hexadecimal digit 
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 Function prototype Function description 

 double atof( const char *nPtr ); Converts the string nPtr to double. 

 int atoi( const char *nPtr ); Converts the string nPtr to int. 

 long atol( const char *nPtr ); Converts the string nPtr to long int. 

 double strtod( const char *nPtr, char **endPtr ); 

 Converts the string nPtr to double. 

 long strtol( const char *nPtr, char **endPtr, int base ); 

 Converts the string nPtr to long. 

 unsigned long strtoul( const char *nPtr, char **endPtr, int base ); 

 Converts the string nPtr to unsigned long. 
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 Function prototype Function description 

 int getchar( void ); Inputs the next character from the standard input and 

returns it as an integer. 

 char *gets( char *s ); Inputs characters from the standard input into the array 

s until a newline or end-of-file character is encountered. 

A terminating null character is appended to the array. 

Returns the string inputted into s. Note that an error will 

occur if s is not large enough to hold the string. 

 int putchar( int c ); Prints the character stored in c and returns it as an integer. 

 int puts( const char *s ); Prints the string s followed by a newline character. Returns 

a non-zero integer if successful, or EOF if an error occurs. 

 int sprintf( char *s, const char *format, ... ); 

 Equivalent to printf, except the output is stored in 

the array s instead of printed on the screen. Returns 

the number of characters written to s, or EOF if an 

error occurs. 

 int sscanf( char *s, const char *format, ... ); 

 Equivalent to scanf, except the input is read from 

the array s rather than from the keyboard. Returns the 

number of items successfully read by the function, or  

EOF if an error occurs. 
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 Function prototype Function description 

 char *strcpy( char *s1, const char *s2 ) 

 Copies string s2 into array s1. The value of s1 is returned. 

 char *strncpy( char *s1, const char *s2, size_t n ) 

 Copies at most n characters of string s2 into array s1. The value of 

s1 is returned. 

 char *strcat( char *s1, const char *s2 ) 

 Appends string s2 to array s1. The first character of s2 overwrites 

the terminating null character of s1. The value of s1 is returned. 

 char *strncat( char *s1, const char *s2, size_t n ) 

 Appends at most n characters of string s2 to array s1. The first 

character of s2 overwrites the terminating null character of s1. 

The value of s1 is returned. 
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 Function prototype Function description 

 int strcmp( const char *s1, const char *s2 ); 

 Compares the string s1 with the string s2. The function returns 

0, less than 0 or greater than 0 if s1 is equal to, less than or 

greater than s2, respectively. 

 int strncmp( const char *s1, const char *s2, size_t n ); 

 Compares up to n characters of the string s1 with the string s2. 

The function returns 0, less than 0 or greater than 0 if s1 is 

equal to, less than or greater than s2, respectively.  
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 1      // Fig. 5.30: fig05_30.cpp

 2      // Using strcmp and strncmp.

 3      #include <iostream>

 4      

 5      using std::cout;

 6      using std::endl;

 7      

 8      #include <iomanip>

 9      

 10    using std::setw;

 11    

 12    #include <cstring>  // prototypes for strcmp and strncmp

 13    

 14    int main()

 15    {

 16    char *s1 = "Happy New Year";

 17    char *s2 = "Happy New Year";

 18    char *s3 = "Happy Holidays";

 19    

 20    cout << "s1 = " << s1 << "\ns2 = " << s2

 21    << "\ns3 = " << s3 << "\n\nstrcmp(s1, s2) = "

 22    << setw( 2 ) << strcmp( s1, s2 ) 

 23    << "\nstrcmp(s1, s3) = " << setw( 2 ) 

 24    << strcmp( s1, s3 ) << "\nstrcmp(s3, s1) = "

 25    << setw( 2 ) << strcmp( s3, s1 );
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 26    

 27    cout << "\n\nstrncmp(s1, s3, 6) = " << setw( 2 ) 
 28    << strncmp( s1, s3, 6 ) << "\nstrncmp(s1, s3, 7) = "
 29    << setw( 2 ) << strncmp( s1, s3, 7 ) 
 30    << "\nstrncmp(s3, s1, 7) = "
 31    << setw( 2 ) << strncmp( s3, s1, 7 ) << endl;
 32    

 33    return 0;  // indicates successful termination
 34    

 35    } // end main

s1 = Happy New Year

s2 = Happy New Year

s3 = Happy Holidays

strcmp(s1, s2) =  0

strcmp(s1, s3) =  1

strcmp(s3, s1) = -1

strncmp(s1, s3, 6) =  0

strncmp(s1, s3, 7) =  1

strncmp(s3, s1, 7) = -1


