
PEN203
Characters and Strings

1

C++ How to Program
Deitel & Deitel

 Fundamentals of Strings and Characters

 Character-Handling Library

 String-Conversion Functions

 Standard Input/Output Library Functions

 String Manipulation Functions

 String Comparison Functions

2

Outline

Fundamentals of Strings and Characters

3

 Characters

 Character constant is an int value represented as
a character

 Strings

 A series of characters considered as a single unit

 String literal is written in double quotes

"Hello"

 Basically strings are arrays of characters

 The actual value of string is the address of first

character

Fundamentals of Strings and Characters

4

 String definitions

 Define as a character array or a variable of type
char *

char color[] = "blue";

char *colorPtr = "blue";

 Strings represented as character arrays end with
‘\0’

 color variable has 4+1=5 elements

 To input strings using scanf:
 cin>>word;

Character-Handling Library (ctype.h)

5

 1 /* Fig. 8.2: fig08_02.c

 2 Using functions isdigit, isalpha, isalnum, and isxdigit */

 3 #include <stdio.h>

 4 #include <ctype.h>

 5

 6 int main(void)

 7 {

 8 printf("%s\n%s%s\n%s%s\n\n", "According to isdigit: ",

 9 isdigit('8') ? "8 is a " : "8 is not a ", "digit",

10 isdigit('#') ? "# is a " : "# is not a ", "digit");

11

12 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n",

13 "According to isalpha:",

14 isalpha('A') ? "A is a " : "A is not a ", "letter",

15 isalpha('b') ? "b is a " : "b is not a ", "letter",

16 isalpha('&') ? "& is a " : "& is not a ", "letter",

17 isalpha('4') ? "4 is a " : "4 is not a ", "letter");

18

Character-Handling Library

6

19 printf("%s\n%s%s\n%s%s\n%s%s\n\n",

20 "According to isalnum:",

21 isalnum('A') ? "A is a " : "A is not a ",

22 "digit or a letter",

23 isalnum('8') ? "8 is a " : "8 is not a ",

24 "digit or a letter",

25 isalnum('#') ? "# is a " : "# is not a ",

26 "digit or a letter");

27

28 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n%s%s\n",

29 "According to isxdigit:",

30 isxdigit('F') ? "F is a " : "F is not a ",

31 "hexadecimal digit",

32 isxdigit('J') ? "J is a " : "J is not a ",

33 "hexadecimal digit",

34 isxdigit('7') ? "7 is a " : "7 is not a ",

35 "hexadecimal digit",

36 isxdigit('$') ? "$ is a " : "$ is not a ",

Character-Handling Library

7

37 "hexadecimal digit",

38 isxdigit('f') ? "f is a " : "f is not a ",

39 "hexadecimal digit");

40

41 return 0; /* indicates successful termination */

42

43 } /* end main */

According to isdigit:
8 is a digit
is not a digit

According to isalpha:
A is a letter
b is a letter
& is not a letter
4 is not a letter

According to isalnum:
A is a digit or a letter
8 is a digit or a letter
is not a digit or a letter

According to isxdigit:
F is a hexadecimal digit
J is not a hexadecimal digit
7 is a hexadecimal digit
$ is not a hexadecimal digit
f is a hexadecimal digit

String-Conversion Functions (stdlib.h)

8

 Function prototype Function description

 double atof(const char *nPtr); Converts the string nPtr to double.

 int atoi(const char *nPtr); Converts the string nPtr to int.

 long atol(const char *nPtr); Converts the string nPtr to long int.

 double strtod(const char *nPtr, char **endPtr);

 Converts the string nPtr to double.

 long strtol(const char *nPtr, char **endPtr, int base);

 Converts the string nPtr to long.

 unsigned long strtoul(const char *nPtr, char **endPtr, int base);

 Converts the string nPtr to unsigned long.

Standard Input/Output Library Functions (stdio.h)

9

 Function prototype Function description

 int getchar(void); Inputs the next character from the standard input and

returns it as an integer.

 char *gets(char *s); Inputs characters from the standard input into the array

s until a newline or end-of-file character is encountered.

A terminating null character is appended to the array.

Returns the string inputted into s. Note that an error will

occur if s is not large enough to hold the string.

 int putchar(int c); Prints the character stored in c and returns it as an integer.

 int puts(const char *s); Prints the string s followed by a newline character. Returns

a non-zero integer if successful, or EOF if an error occurs.

 int sprintf(char *s, const char *format, ...);

 Equivalent to printf, except the output is stored in

the array s instead of printed on the screen. Returns

the number of characters written to s, or EOF if an

error occurs.

 int sscanf(char *s, const char *format, ...);

 Equivalent to scanf, except the input is read from

the array s rather than from the keyboard. Returns the

number of items successfully read by the function, or

EOF if an error occurs.

String Manipulation Functions (string.h)

10

 Function prototype Function description

 char *strcpy(char *s1, const char *s2)

 Copies string s2 into array s1. The value of s1 is returned.

 char *strncpy(char *s1, const char *s2, size_t n)

 Copies at most n characters of string s2 into array s1. The value of

s1 is returned.

 char *strcat(char *s1, const char *s2)

 Appends string s2 to array s1. The first character of s2 overwrites

the terminating null character of s1. The value of s1 is returned.

 char *strncat(char *s1, const char *s2, size_t n)

 Appends at most n characters of string s2 to array s1. The first

character of s2 overwrites the terminating null character of s1.

The value of s1 is returned.

String Comparison Functions (string.h)

11

 Function prototype Function description

 int strcmp(const char *s1, const char *s2);

 Compares the string s1 with the string s2. The function returns

0, less than 0 or greater than 0 if s1 is equal to, less than or

greater than s2, respectively.

 int strncmp(const char *s1, const char *s2, size_t n);

 Compares up to n characters of the string s1 with the string s2.

The function returns 0, less than 0 or greater than 0 if s1 is

equal to, less than or greater than s2, respectively.

String Comparison Functions (string.h)

12

 1 // Fig. 5.30: fig05_30.cpp

 2 // Using strcmp and strncmp.

 3 #include <iostream>

 4

 5 using std::cout;

 6 using std::endl;

 7

 8 #include <iomanip>

 9

 10 using std::setw;

 11

 12 #include <cstring> // prototypes for strcmp and strncmp

 13

 14 int main()

 15 {

 16 char *s1 = "Happy New Year";

 17 char *s2 = "Happy New Year";

 18 char *s3 = "Happy Holidays";

 19

 20 cout << "s1 = " << s1 << "\ns2 = " << s2

 21 << "\ns3 = " << s3 << "\n\nstrcmp(s1, s2) = "

 22 << setw(2) << strcmp(s1, s2)

 23 << "\nstrcmp(s1, s3) = " << setw(2)

 24 << strcmp(s1, s3) << "\nstrcmp(s3, s1) = "

 25 << setw(2) << strcmp(s3, s1);

String Comparison Functions (string.h)

13

 26

 27 cout << "\n\nstrncmp(s1, s3, 6) = " << setw(2)
 28 << strncmp(s1, s3, 6) << "\nstrncmp(s1, s3, 7) = "
 29 << setw(2) << strncmp(s1, s3, 7)
 30 << "\nstrncmp(s3, s1, 7) = "
 31 << setw(2) << strncmp(s3, s1, 7) << endl;
 32

 33 return 0; // indicates successful termination
 34

 35 } // end main

s1 = Happy New Year

s2 = Happy New Year

s3 = Happy Holidays

strcmp(s1, s2) = 0

strcmp(s1, s3) = 1

strcmp(s3, s1) = -1

strncmp(s1, s3, 6) = 0

strncmp(s1, s3, 7) = 1

strncmp(s3, s1, 7) = -1

