
PEN203
Structures and Bit Manipulations

1

C++ How to Program
Deitel & Deitel

 Structure Definitions

 Initializing Structures

 Accessing Members of Structures

 Using Structures with Functions

 Bitwise Operators

2

Outline

Structure Definitions

3

 Structures are collections of related variables

under one name.

 Unlike arrays, structures can contain variables of
different data types.

 Structures are used to create linked lists,

stacks, queues and trees.

Structure Definitions

4

 Example:

struct student {

int id;

float gpa;

};

 Keyword struct is used to define structure

student

 student contains two members one integer id,

the other is float gpa.

Structure Definitions

5

 Structures can not contain an instance of itself.

 However they can include a pointer to the

same structure type.

 Self referential structures

 Structure variable definitions:

 student s1, s[50], *sptr; or

struct student {

int id;

float gpa;

} s1, s[50], *sptr;

Structure Definitions

6

 The following operations can be performed on

structure variables:

 Assigning a structure variable to another
structure variable of the same type

 Taking address of a structure

 Accessing the members of a structure

 Using sizeof operator to find the size of a structure

Initializing Structures

7

 Initializer List

 student s1 = {123, 3.50};

 Assignment statements

 Student s2=s1;

 student s3;

 s3.id=435;

 s3.gpa=2.50;

Accessing Members of Structures

8

 (.) dot opeartor is used with structure variables

 cout<<s1.id;

 (->) arrow operator is used with pointers to

structure variables

 cout<<sptr->id;

 or cout<<(*sptr).id;

Accessing Members of Structures

9

 1 /* Fig. 10.2: fig10_02.c

 2 Using the structure member and

 3 structure pointer operators */

 4 #include <stdio.h>

 5

 6 /* card structure definition */

 7 struct card {

 8 char *face; /* define pointer face */

 9 char *suit; /* define pointer suit */

10 }; /* end structure card */

11

12 int main(void)

13 {

14 struct card aCard; /* define one struct card variable */

15 struct card *cardPtr; /* define a pointer to a struct card */

16

17 /* place strings into aCard */

18 aCard.face = "Ace";

19 aCard.suit = "Spades";

Accessing Members of Structures

10

20

21 cardPtr = &aCard; /* assign address of aCard to cardPtr */

22

23 printf("%s%s%s\n%s%s%s\n%s%s%s\n", aCard.face, " of ", aCard.suit,

24 cardPtr->face, " of ", cardPtr->suit,

25 (*cardPtr).face, " of ", (*cardPtr).suit);

26

27 return 0; /* indicates successful termination */

28

29 } /* end main */

Ace of Spades
Ace of Spades
Ace of Spades

Using Structures with Functions

11

 Passing entire structure or passing individiual

members (call by value)

 To pass structures call by reference

 Pass its address

Bitwise Operators

12

 Operator Description

 & bitwise AND The bits in the result are set to 1 if the corresponding bits

in the two operands are both 1 .

 | bitwise inclusive

OR

The bits in the result are set to 1 if at least one of the corresponding bits

in the two operands is 1.

 ^ bitwise exclusive

OR

The bits in the result are set to 1 if exactly one of the corresponding bits

in the two operands is 1.

 << left shift Shifts the bits of the first operand left by the number of bits specified by

the second operand; fill from the right with 0 bits.

 >> right shift Shifts the bits of the first operand right by the number of bits specified by

the second operand; the method of filling from the left is machine

dependent.

 ~ one’s complement All 0 bits are set to 1 and all 1 bits are set to 0.

Bitwise Operators

13

 1 /* Fig. 10.9: fig10_09.c

 2 Using the bitwise AND, bitwise inclusive OR, bitwise

 3 exclusive OR and bitwise complement operators */

 4 #include <stdio.h>

 5

 6 void displayBits(unsigned value); /* prototype */

 7

 8 int main(void)

 9 {

10 unsigned number1;

11 unsigned number2;

12 unsigned mask;

13 unsigned setBits;

14

15 /* demonstrate bitwise AND (&) */

16 number1 = 65535;

17 mask = 1;

18 printf("The result of combining the following\n");

19 displayBits(number1);

20 displayBits(mask);

21 printf("using the bitwise AND operator & is\n");

22 displayBits(number1 & mask);

23

Bitwise Operators

14

24 /* demonstrate bitwise inclusive OR (|) */

25 number1 = 15;

26 setBits = 241;

27 printf("\nThe result of combining the following\n");

28 displayBits(number1);

29 displayBits(setBits);

30 printf("using the bitwise inclusive OR operator | is\n");

31 displayBits(number1 | setBits);

32

33 /* demonstrate bitwise exclusive OR (^) */

34 number1 = 139;

35 number2 = 199;

36 printf("\nThe result of combining the following\n");

37 displayBits(number1);

38 displayBits(number2);

39 printf("using the bitwise exclusive OR operator ^ is\n");

40 displayBits(number1 ^ number2);

41

42 /* demonstrate bitwise complement (~)*/

43 number1 = 21845;

44 printf("\nThe one's complement of\n");

45 displayBits(number1);

46 printf("is\n");

47 displayBits(~number1);

48

49 return 0; /* indicates successful termination */

50 } /* end main */

51

Bitwise Operators

15

52 /* display bits of an unsigned integer value */

53 void displayBits(unsigned value)

54 {

55 unsigned c; /* counter */

56

57 /* declare displayMask and left shift 31 bits */

58 unsigned displayMask = 1 << 31;

59

60 printf("%10u = ", value);

61

62 /* loop through bits */

63 for (c = 1; c <= 32; c++) {

64 putchar(value & displayMask ? '1' : '0');

65 value <<= 1; /* shift value left by 1 */

66

67 if (c % 8 == 0) { /* output a space after 8 bits */

68 putchar(' ');

69 } /* end if */

70

71 } /* end for */

72

73 putchar('\n');

74 } /* end function displayBits */

Bitwise Operators

16

The result of combining the following
 65535 = 00000000 00000000 11111111 11111111
 1 = 00000000 00000000 00000000 00000001
using the bitwise AND operator & is
 1 = 00000000 00000000 00000000 00000001

The result of combining the following
 15 = 00000000 00000000 00000000 00001111
 241 = 00000000 00000000 00000000 11110001
using the bitwise inclusive OR operator | is
 255 = 00000000 00000000 00000000 11111111

The result of combining the following
 139 = 00000000 00000000 00000000 10001011
 199 = 00000000 00000000 00000000 11000111
using the bitwise exclusive OR operator ^ is
 76 = 00000000 00000000 00000000 01001100

The one's complement of
 21845 = 00000000 00000000 01010101 01010101
is
4294945450 = 11111111 11111111 10101010 10101010

