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 Structures are collections of related variables 

under one name.

 Unlike arrays, structures can contain variables of 
different data types.

 Structures are used to create linked lists, 

stacks, queues and trees.
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 Example:

struct student {

int id;

float gpa;

};

 Keyword struct is used to define structure 

student

 student contains two members one integer id, 

the other is float gpa. 
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 Structures can not contain an instance of itself.

 However they can include a pointer to the 

same structure type.

 Self referential structures

 Structure variable definitions:

 student s1, s[50], *sptr; or

struct student {

int id;

float gpa;

} s1, s[50], *sptr;
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 The following operations can be performed on 

structure variables:

 Assigning a structure variable to another 
structure variable of the same type

 Taking address of a structure

 Accessing the members of a structure

 Using sizeof operator to find the size of a structure
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 Initializer List

 student s1 = {123, 3.50}; 

 Assignment statements

 Student s2=s1; 

 student s3;

 s3.id=435;

 s3.gpa=2.50; 
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 (.) dot opeartor is used with structure variables

 cout<<s1.id;

 (->) arrow operator is used with pointers to 

structure variables

 cout<<sptr->id;

 or cout<<(*sptr).id;
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 1 /* Fig. 10.2: fig10_02.c 

 2    Using the structure member and  

 3    structure pointer operators */ 

 4 #include <stdio.h> 

 5  

 6 /* card structure definition */          

 7 struct card {                            

 8    char *face; /* define pointer face */ 

 9    char *suit; /* define pointer suit */ 

10 }; /* end structure card */              

11  

12 int main( void ) 

13 {  

14    struct card aCard; /* define one struct card variable */    

15    struct card *cardPtr; /* define a pointer to a struct card */ 

16  

17    /* place strings into aCard */ 

18    aCard.face = "Ace";    

19    aCard.suit = "Spades"; 
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20  

21    cardPtr = &aCard; /* assign address of aCard to cardPtr */ 

22  

23    printf( "%s%s%s\n%s%s%s\n%s%s%s\n", aCard.face, " of ", aCard.suit, 

24       cardPtr->face, " of ", cardPtr->suit,                            

25       ( *cardPtr ).face, " of ", ( *cardPtr ).suit );                  

26     

27    return 0; /* indicates successful termination */ 

28   

29 } /* end main */ 

 
Ace of Spades 
Ace of Spades 
Ace of Spades 
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 Passing entire structure or passing individiual 

members (call by value)

 To pass structures call by reference

 Pass its address
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 Operator Description 

  &   bitwise AND The bits in the result are set to 1 if the corresponding bits 

in the two operands are both 1 . 

 | bitwise inclusive 

OR 

The bits in the result are set to 1 if at least one of the corresponding bits 

in the two operands is 1.  

 ^ bitwise exclusive 

OR 

The bits in the result are set to 1 if exactly one of the corresponding bits 

in the two operands is 1. 

 << left shift Shifts the bits of the first operand left by the number of bits specified by 

the second operand; fill from the right with 0 bits. 

 >> right shift Shifts the bits of the first operand right by the number of bits specified by 

the second operand; the method of filling from the left is machine 

dependent. 

 ~ one’s complement All 0 bits are set to 1 and all 1 bits are set to 0. 
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 1 /* Fig. 10.9: fig10_09.c 

 2    Using the bitwise AND, bitwise inclusive OR, bitwise 

 3    exclusive OR and bitwise complement operators */ 

 4 #include <stdio.h> 

 5  

 6 void displayBits( unsigned value ); /* prototype */ 

 7  

 8 int main( void ) 

 9 {  

10    unsigned number1;  

11    unsigned number2;  

12    unsigned mask;     

13    unsigned setBits; 

14  

15    /* demonstrate bitwise AND (&) */ 

16    number1 = 65535; 

17    mask = 1; 

18    printf( "The result of combining the following\n" ); 

19    displayBits( number1 ); 

20    displayBits( mask ); 

21    printf( "using the bitwise AND operator & is\n" ); 

22    displayBits( number1 & mask ); 

23  
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24    /* demonstrate bitwise inclusive OR (|) */ 

25    number1 = 15; 

26    setBits = 241; 

27    printf( "\nThe result of combining the following\n" ); 

28    displayBits( number1 ); 

29    displayBits( setBits ); 

30    printf( "using the bitwise inclusive OR operator | is\n" ); 

31    displayBits( number1 | setBits ); 

32  

33    /* demonstrate bitwise exclusive OR (^) */ 

34    number1 = 139; 

35    number2 = 199; 

36    printf( "\nThe result of combining the following\n" ); 

37    displayBits( number1 ); 

38    displayBits( number2 ); 

39    printf( "using the bitwise exclusive OR operator ^ is\n" ); 

40    displayBits( number1 ^ number2 ); 

41  

42    /* demonstrate bitwise complement (~)*/ 

43    number1 = 21845; 

44    printf( "\nThe one's complement of\n" ); 

45    displayBits( number1 ); 

46    printf( "is\n" ); 

47    displayBits( ~number1 ); 

48  

49    return 0; /* indicates successful termination */ 

50 } /* end main */ 

51  
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52 /* display bits of an unsigned integer value */ 

53 void displayBits( unsigned value ) 

54 {  

55    unsigned c; /* counter */ 

56  

57    /* declare displayMask and left shift 31 bits */ 

58    unsigned displayMask = 1 << 31; 

59  

60    printf( "%10u = ", value ); 

61  

62    /* loop through bits */ 

63    for ( c = 1; c <= 32; c++ ) {  

64       putchar( value & displayMask ? '1' : '0' ); 

65       value <<= 1; /* shift value left by 1 */ 

66  

67       if ( c % 8 == 0 ) { /* output a space after 8 bits */ 

68          putchar( ' ' ); 

69       } /* end if */ 

70  

71    } /* end for */ 

72  

73    putchar( '\n' ); 

74 } /* end function displayBits */ 
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The result of combining the following 
     65535 = 00000000 00000000 11111111 11111111 
         1 = 00000000 00000000 00000000 00000001 
using the bitwise AND operator & is 
         1 = 00000000 00000000 00000000 00000001 
 
The result of combining the following 
        15 = 00000000 00000000 00000000 00001111 
       241 = 00000000 00000000 00000000 11110001 
using the bitwise inclusive OR operator | is 
       255 = 00000000 00000000 00000000 11111111 
 
The result of combining the following 
       139 = 00000000 00000000 00000000 10001011 
       199 = 00000000 00000000 00000000 11000111 
using the bitwise exclusive OR operator ^ is 
        76 = 00000000 00000000 00000000 01001100 
 
The one's complement of 
     21845 = 00000000 00000000 01010101 01010101 
is 
4294945450 = 11111111 11111111 10101010 10101010 
 

 


