
PEN203
Structures and Bit Manipulations

1

C++ How to Program
Deitel & Deitel

 Structure Definitions

 Initializing Structures

 Accessing Members of Structures

 Using Structures with Functions

 Bitwise Operators

2

Outline

Structure Definitions

3

 Structures are collections of related variables

under one name.

 Unlike arrays, structures can contain variables of
different data types.

 Structures are used to create linked lists,

stacks, queues and trees.

Structure Definitions

4

 Example:

struct student {

int id;

float gpa;

};

 Keyword struct is used to define structure

student

 student contains two members one integer id,

the other is float gpa.

Structure Definitions

5

 Structures can not contain an instance of itself.

 However they can include a pointer to the

same structure type.

 Self referential structures

 Structure variable definitions:

 student s1, s[50], *sptr; or

struct student {

int id;

float gpa;

} s1, s[50], *sptr;

Structure Definitions

6

 The following operations can be performed on

structure variables:

 Assigning a structure variable to another
structure variable of the same type

 Taking address of a structure

 Accessing the members of a structure

 Using sizeof operator to find the size of a structure

Initializing Structures

7

 Initializer List

 student s1 = {123, 3.50};

 Assignment statements

 Student s2=s1;

 student s3;

 s3.id=435;

 s3.gpa=2.50;

Accessing Members of Structures

8

 (.) dot opeartor is used with structure variables

 cout<<s1.id;

 (->) arrow operator is used with pointers to

structure variables

 cout<<sptr->id;

 or cout<<(*sptr).id;

Accessing Members of Structures

9

 1 /* Fig. 10.2: fig10_02.c

 2 Using the structure member and

 3 structure pointer operators */

 4 #include <stdio.h>

 5

 6 /* card structure definition */

 7 struct card {

 8 char *face; /* define pointer face */

 9 char *suit; /* define pointer suit */

10 }; /* end structure card */

11

12 int main(void)

13 {

14 struct card aCard; /* define one struct card variable */

15 struct card *cardPtr; /* define a pointer to a struct card */

16

17 /* place strings into aCard */

18 aCard.face = "Ace";

19 aCard.suit = "Spades";

Accessing Members of Structures

10

20

21 cardPtr = &aCard; /* assign address of aCard to cardPtr */

22

23 printf("%s%s%s\n%s%s%s\n%s%s%s\n", aCard.face, " of ", aCard.suit,

24 cardPtr->face, " of ", cardPtr->suit,

25 (*cardPtr).face, " of ", (*cardPtr).suit);

26

27 return 0; /* indicates successful termination */

28

29 } /* end main */

Ace of Spades
Ace of Spades
Ace of Spades

Using Structures with Functions

11

 Passing entire structure or passing individiual

members (call by value)

 To pass structures call by reference

 Pass its address

Bitwise Operators

12

 Operator Description

 & bitwise AND The bits in the result are set to 1 if the corresponding bits

in the two operands are both 1 .

 | bitwise inclusive

OR

The bits in the result are set to 1 if at least one of the corresponding bits

in the two operands is 1.

 ^ bitwise exclusive

OR

The bits in the result are set to 1 if exactly one of the corresponding bits

in the two operands is 1.

 << left shift Shifts the bits of the first operand left by the number of bits specified by

the second operand; fill from the right with 0 bits.

 >> right shift Shifts the bits of the first operand right by the number of bits specified by

the second operand; the method of filling from the left is machine

dependent.

 ~ one’s complement All 0 bits are set to 1 and all 1 bits are set to 0.

Bitwise Operators

13

 1 /* Fig. 10.9: fig10_09.c

 2 Using the bitwise AND, bitwise inclusive OR, bitwise

 3 exclusive OR and bitwise complement operators */

 4 #include <stdio.h>

 5

 6 void displayBits(unsigned value); /* prototype */

 7

 8 int main(void)

 9 {

10 unsigned number1;

11 unsigned number2;

12 unsigned mask;

13 unsigned setBits;

14

15 /* demonstrate bitwise AND (&) */

16 number1 = 65535;

17 mask = 1;

18 printf("The result of combining the following\n");

19 displayBits(number1);

20 displayBits(mask);

21 printf("using the bitwise AND operator & is\n");

22 displayBits(number1 & mask);

23

Bitwise Operators

14

24 /* demonstrate bitwise inclusive OR (|) */

25 number1 = 15;

26 setBits = 241;

27 printf("\nThe result of combining the following\n");

28 displayBits(number1);

29 displayBits(setBits);

30 printf("using the bitwise inclusive OR operator | is\n");

31 displayBits(number1 | setBits);

32

33 /* demonstrate bitwise exclusive OR (^) */

34 number1 = 139;

35 number2 = 199;

36 printf("\nThe result of combining the following\n");

37 displayBits(number1);

38 displayBits(number2);

39 printf("using the bitwise exclusive OR operator ^ is\n");

40 displayBits(number1 ^ number2);

41

42 /* demonstrate bitwise complement (~)*/

43 number1 = 21845;

44 printf("\nThe one's complement of\n");

45 displayBits(number1);

46 printf("is\n");

47 displayBits(~number1);

48

49 return 0; /* indicates successful termination */

50 } /* end main */

51

Bitwise Operators

15

52 /* display bits of an unsigned integer value */

53 void displayBits(unsigned value)

54 {

55 unsigned c; /* counter */

56

57 /* declare displayMask and left shift 31 bits */

58 unsigned displayMask = 1 << 31;

59

60 printf("%10u = ", value);

61

62 /* loop through bits */

63 for (c = 1; c <= 32; c++) {

64 putchar(value & displayMask ? '1' : '0');

65 value <<= 1; /* shift value left by 1 */

66

67 if (c % 8 == 0) { /* output a space after 8 bits */

68 putchar(' ');

69 } /* end if */

70

71 } /* end for */

72

73 putchar('\n');

74 } /* end function displayBits */

Bitwise Operators

16

The result of combining the following
 65535 = 00000000 00000000 11111111 11111111
 1 = 00000000 00000000 00000000 00000001
using the bitwise AND operator & is
 1 = 00000000 00000000 00000000 00000001

The result of combining the following
 15 = 00000000 00000000 00000000 00001111
 241 = 00000000 00000000 00000000 11110001
using the bitwise inclusive OR operator | is
 255 = 00000000 00000000 00000000 11111111

The result of combining the following
 139 = 00000000 00000000 00000000 10001011
 199 = 00000000 00000000 00000000 11000111
using the bitwise exclusive OR operator ^ is
 76 = 00000000 00000000 00000000 01001100

The one's complement of
 21845 = 00000000 00000000 01010101 01010101
is
4294945450 = 11111111 11111111 10101010 10101010

