
PEN203
Introduction to Classes and

Objects

1

C How to Program
Deitel & Deitel

 Defining a Class with a Member Function

 Defining a Member Function with a Parameter

 Data Members, set Functions and get Functions

 Initializing Objects with Constructors

 Separating Interface from Implementation

2

Outline

Defining a Class with a Member Function

3

 Class definition informs compiler about the

member functions and the data members of

the class.

 Keyword class is used with the class name to

create a new class

 Class body is placed in braces { }

 Access specifier public shows that a member

function or data member can be accessed by

other functions.

Defining a Class with a Member Function

4

 1 // Fig. 19.1: fig19_01.cpp

 2 // Define class GradeBook with a member function displayMessage;

 3 // Create a GradeBook object and call its displayMessage function.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7

 8 // GradeBook class definition

 9 class GradeBook

10 {

11 public:

12 // function that displays a welcome message to the GradeBook user

13 void displayMessage()

14 {

15 cout << "Welcome to the Grade Book!" << endl;

16 } // end function displayMessage

17 }; // end class GradeBook

18

19 // function main begins program execution

20 int main()

21 {

22 GradeBook myGradeBook; // create a GradeBook object named myGradeBook

23 myGradeBook.displayMessage(); // call object's displayMessage function

24 return 0; // indicate successful termination

25 } // end main

Welcome to the Grade Book!

Defining a Class with a Member Function

5

 Member function

 A return type should be provided.

 void shows that the function does not return any
value.

 Function name must be a valid identifier.

 Function body delimited by braces.

 Defining a function inside another function is a
syntax error.

Defining a Member Function with a Parameter

6

 Function parameters

 Placed in parentheses that follows the function
name

 Additional information needed by a function to
complete its task

 Any number of parameters (comma separated
list)

 Number, order and types of arguments in a
function call must match the parameters in
function parameter list.

 Function arguments

 Values passed by function call for each function
parameter

Data Members, set Functions and get Functions

7

 Local variables are declared in function

definition’s body

 They cannot be used outside of that function

body

 The values of local variables are lost when a

function terminates

Data Members, set Functions and get Functions

8

 Attributes are the properties of the object

 They are represented as data members

 They are actually variables in a class definition

 Each object of class has its own copy of

attributes

Data Members, set Functions and get Functions

9

 Access specifier private

 private data members or member functions can
only be used in member functions of the class.

 private is the default access specifier

 Access specifiers public and private may be

repeated and intermixed. However it is not a

good programming practice.

Data Members, set Functions and get Functions

10

 public member functions enable user of the

class to set or get the values of private data

members

 set functions sometimes are called as mutators

 get functions sometimes are called as

accessors

 set and get functions should be used by other

member functions of the same class

Initializing Objects with Constructors

11

 Constructors

 They are special functions.

 They are called implicitly and automatically
when an object of class is created.

 Name of the constructor must be same with the
class.

 They have no return types. They do not return
values, not even void.

 Default constructor has no parameters.

Initializing Objects with Constructors

12

 1 // Fig. 19.7: fig19_07.cpp

 2 // Instantiating multiple objects of the GradeBook class and using

 3 // the GradeBook constructor to specify the course name

 4 // when each GradeBook object is created.

 5 #include <iostream>

 6 using std::cout;

 7 using std::endl;

 8

 9 #include <string> // program uses C++ standard string class

10 using std::string;

11

12 // GradeBook class definition

13 class GradeBook

14 {

15 public:

16 // constructor initializes courseName with string supplied as argument

17 GradeBook(string name)

18 {

19 setCourseName(name); // call set function to initialize courseName

20 } // end GradeBook constructor

21

22 // function to set the course name

23 void setCourseName(string name)

24 {

25 courseName = name; // store the course name in the object

26 } // end function setCourseName

27

Initializing Objects with Constructors

13

28 // function to get the course name

29 string getCourseName()

30 {

31 return courseName; // return object's courseName

32 } // end function getCourseName

33

34 // display a welcome message to the GradeBook user

35 void displayMessage()

36 {

37 // call getCourseName to get the courseName

38 cout << "Welcome to the grade book for\n" << getCourseName()

39 << "!" << endl;

40 } // end function displayMessage

41 private:

42 string courseName; // course name for this GradeBook

43 }; // end class GradeBook

44

Initializing Objects with Constructors

14

45 // function main begins program execution

46 int main()

47 {

48 // create two GradeBook objects

49 GradeBook gradeBook1("CS101 Introduction to C++ Programming");

50 GradeBook gradeBook2("CS102 Data Structures in C++");

51

52 // display initial value of courseName for each GradeBook

53 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()

54 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()

55 << endl;

56 return 0; // indicate successful termination

57 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Separating Interface from Implementation

15

 Interface

 A class’s interface consists of the class’s public
member functions

 It describe which of the services are available
and the way of requesting those services.

 The implementation of the functions are not
given to clients.

 If implementation changes, the client code
should not be affected.

