
PEN203
Classes: A Deeper Look,

1

C How to Program
Deitel & Deitel

 Introduction

 Time Class Case Study

 Class Scope and Accessing Class Members

 Access Functions and Utility Functions

 Constructors with Default Arguments

 Destructors

 When Constructors and Destructors are Called

 Default Memberwise Assignment

2

Outline

Introduction

3

 There are three types of handles on an object

 Name of an object

 Reference to an object

 Pointer to an object

 Class functions

 Predicate functions

 Utility functions

Time Class Case Study

4

 Preprocessor wrappers are used to prevent

class definition from being included more than

once.

 #ifndef

 Skip the code if it has been included already.

 #define

 Define a name so the code will not be included

again

 #endif

 Multiple definition errors are eliminated.

Time Class Case Study

5

 1 // Fig. 20.1: Time.h

 2 // Declaration of class Time.

 3 // Member functions are defined in Time.cpp

 4

 5 // prevent multiple inclusions of header file

 6 #ifndef TIME_H

 7 #define TIME_H

 8

 9 // Time class definition

10 class Time

11 {

12 public:

13 Time(); // constructor

14 void setTime(int, int, int); // set hour, minute and second

15 void printUniversal(); // print time in universal-time format

16 void printStandard(); // print time in standard-time format

17 private:

18 int hour; // 0 - 23 (24-hour clock format)

19 int minute; // 0 - 59

20 int second; // 0 - 59

21 }; // end class Time

22

23 #endif

Time Class Case Study

6

 1 // Fig. 20.2: Time.cpp

 2 // Member-function definitions for class Time.

 3 #include <iostream>

 4 using std::cout;

 5

 6 #include <iomanip>

 7 using std::setfill;

 8 using std::setw;

 9

10 #include "Time.h" // include definition of class Time from Time.h

11

12 // Time constructor initializes each data member to zero.

13 // Ensures all Time objects start in a consistent state.

14 Time::Time()

15 {

16 hour = minute = second = 0;

17 } // end Time constructor

18

19 // set new Time value using universal time; ensure that

20 // the data remains consistent by setting invalid values to zero

21 void Time::setTime(int h, int m, int s)

22 {

23 hour = (h >= 0 && h < 24) ? h : 0; // validate hour

24 minute = (m >= 0 && m < 60) ? m : 0; // validate minute

25 second = (s >= 0 && s < 60) ? s : 0; // validate second

26 } // end function setTime

Time Class Case Study

7

27

28 // print Time in universal-time format (HH:MM:SS)

29 void Time::printUniversal()

30 {

31 cout << setfill('0') << setw(2) << hour << ":"

32 << setw(2) << minute << ":" << setw(2) << second;

33 } // end function printUniversal

34

35 // print Time in standard-time format (HH:MM:SS AM or PM)

36 void Time::printStandard()

37 {

38 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12) << ":"

39 << setfill('0') << setw(2) << minute << ":" << setw(2)

40 << second << (hour < 12 ? " AM" : " PM");

41 } // end function printStandard

Time Class Case Study

8

 1 // Fig. 20.3: fig20_03.cpp

 2 // Program to test class Time.

 3 // NOTE: This file must be compiled with Time.cpp.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7

 8 #include "Time.h" // include definition of class Time from Time.h

 9

10 int main()

11 {

12 Time t; // instantiate object t of class Time

13

14 // output Time object t's initial values

15 cout << "The initial universal time is ";

16 t.printUniversal(); // 00:00:00

17 cout << "\nThe initial standard time is ";

18 t.printStandard(); // 12:00:00 AM

19

20 t.setTime(13, 27, 6); // change time

21

22 // output Time object t's new values

23 cout << "\n\nUniversal time after setTime is ";

24 t.printUniversal(); // 13:27:06

25 cout << "\nStandard time after setTime is ";

26 t.printStandard(); // 1:27:06 PM

27

28 t.setTime(99, 99, 99); // attempt invalid settings

Time Class Case Study

9

29

30 // output t's values after specifying invalid values

31 cout << "\n\nAfter attempting invalid settings:"

32 << "\nUniversal time: ";

33 t.printUniversal(); // 00:00:00

34 cout << "\nStandard time: ";

35 t.printStandard(); // 12:00:00 AM

36 cout << endl;

37 return 0;

38 } // end main

The initial universal time is 00:00:00
The initial standard time is 12:00:00 AM

Universal time after setTime is 13:27:06
Standard time after setTime is 1:27:06 PM

After attempting invalid settings:

Universal time: 00:00:00

Standard time: 12:00:00 AM

Time Class Case Study

10

 Member functions are declared in a class

definition but defined outside of class definition

 Still in the class scope

 Can be accessible by other member functions of
the class directly

 Outside functions can access member functions
using:

 Object of the class

 Reference to an object of the class

 Pointer to an object of the class

 Binary scope resolution operator

Time Class Case Study

11

 Using class Time

 Time time1;

 Time timeAr[20];

 Time &timeRef = time1;

 Time *timePtr = &time1;

Class Scope and Accessing Class Members

12

 Class scope contains:

 Data members

 Member functions

 Nonmember functions are defined at file scope

 Variables declared in a member function

 Have block scope

 Known only in that function

Class Scope and Accessing Class Members

13

 Dot member selection operator (.)

 Accesses the object’s member

 Used with an object’s name or with a reference to

an object

 Arrow member selection operator (->)

 Accesses the object’s members

 Used with a pointer to an object

Access Functions and Utility Functions

14

 Access functions can read or display data

 They can test the truth or falsity of conditions

 They are also called predicate functions

 Utility functions are private member functions

that help the operation of public member

functions

 Utility functions are not part of the class public

interface

Constructors with Default Arguments

15

 To initialize data members to a consistent

state, constructors can specify default

arguments

 If no values are provided in a constructor call,

default arguments are used.

 They can be invoked with no arguments

 Max one default constructor per class

Destructor

16

 A special member function like constructor

 Name is the tilde character (~) followed by the

class name

 Destructors are called when an object is

destroyed

 They receive no parameter and returns no

value

 A class may have only one destructor

 If a destructor is not provided, the compiler

creates one empty destructor.

When Constructors and Destructors are Called

17

 Constrcutors and destructors are called

implicitly by the compiler

 Generally destructor calls are made in the

reverse order of the corresponding constructor

calls

 Storage classes of objects can alter the order.

Default Memberwise Assignment

18

 Assignment operator (=) can be used to assign

an object of class to another object of the

same type.

 Each data member of the right object is

assigned to the same data member of the left

object.

 Can crate problem if data members contain

pointers to dynamically allocated memory

