
PEN203
Classes: A Deeper Look,

1

C How to Program
Deitel & Deitel

 Introduction

 Time Class Case Study

 Class Scope and Accessing Class Members

 Access Functions and Utility Functions

 Constructors with Default Arguments

 Destructors

 When Constructors and Destructors are Called

 Default Memberwise Assignment

2

Outline

Introduction

3

 There are three types of handles on an object

 Name of an object

 Reference to an object

 Pointer to an object

 Class functions

 Predicate functions

 Utility functions

Time Class Case Study

4

 Preprocessor wrappers are used to prevent

class definition from being included more than

once.

 #ifndef

 Skip the code if it has been included already.

 #define

 Define a name so the code will not be included

again

 #endif

 Multiple definition errors are eliminated.

Time Class Case Study

5

 1 // Fig. 20.1: Time.h

 2 // Declaration of class Time.

 3 // Member functions are defined in Time.cpp

 4

 5 // prevent multiple inclusions of header file

 6 #ifndef TIME_H

 7 #define TIME_H

 8

 9 // Time class definition

10 class Time

11 {

12 public:

13 Time(); // constructor

14 void setTime(int, int, int); // set hour, minute and second

15 void printUniversal(); // print time in universal-time format

16 void printStandard(); // print time in standard-time format

17 private:

18 int hour; // 0 - 23 (24-hour clock format)

19 int minute; // 0 - 59

20 int second; // 0 - 59

21 }; // end class Time

22

23 #endif

Time Class Case Study

6

 1 // Fig. 20.2: Time.cpp

 2 // Member-function definitions for class Time.

 3 #include <iostream>

 4 using std::cout;

 5

 6 #include <iomanip>

 7 using std::setfill;

 8 using std::setw;

 9

10 #include "Time.h" // include definition of class Time from Time.h

11

12 // Time constructor initializes each data member to zero.

13 // Ensures all Time objects start in a consistent state.

14 Time::Time()

15 {

16 hour = minute = second = 0;

17 } // end Time constructor

18

19 // set new Time value using universal time; ensure that

20 // the data remains consistent by setting invalid values to zero

21 void Time::setTime(int h, int m, int s)

22 {

23 hour = (h >= 0 && h < 24) ? h : 0; // validate hour

24 minute = (m >= 0 && m < 60) ? m : 0; // validate minute

25 second = (s >= 0 && s < 60) ? s : 0; // validate second

26 } // end function setTime

Time Class Case Study

7

27

28 // print Time in universal-time format (HH:MM:SS)

29 void Time::printUniversal()

30 {

31 cout << setfill('0') << setw(2) << hour << ":"

32 << setw(2) << minute << ":" << setw(2) << second;

33 } // end function printUniversal

34

35 // print Time in standard-time format (HH:MM:SS AM or PM)

36 void Time::printStandard()

37 {

38 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12) << ":"

39 << setfill('0') << setw(2) << minute << ":" << setw(2)

40 << second << (hour < 12 ? " AM" : " PM");

41 } // end function printStandard

Time Class Case Study

8

 1 // Fig. 20.3: fig20_03.cpp

 2 // Program to test class Time.

 3 // NOTE: This file must be compiled with Time.cpp.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7

 8 #include "Time.h" // include definition of class Time from Time.h

 9

10 int main()

11 {

12 Time t; // instantiate object t of class Time

13

14 // output Time object t's initial values

15 cout << "The initial universal time is ";

16 t.printUniversal(); // 00:00:00

17 cout << "\nThe initial standard time is ";

18 t.printStandard(); // 12:00:00 AM

19

20 t.setTime(13, 27, 6); // change time

21

22 // output Time object t's new values

23 cout << "\n\nUniversal time after setTime is ";

24 t.printUniversal(); // 13:27:06

25 cout << "\nStandard time after setTime is ";

26 t.printStandard(); // 1:27:06 PM

27

28 t.setTime(99, 99, 99); // attempt invalid settings

Time Class Case Study

9

29

30 // output t's values after specifying invalid values

31 cout << "\n\nAfter attempting invalid settings:"

32 << "\nUniversal time: ";

33 t.printUniversal(); // 00:00:00

34 cout << "\nStandard time: ";

35 t.printStandard(); // 12:00:00 AM

36 cout << endl;

37 return 0;

38 } // end main

The initial universal time is 00:00:00
The initial standard time is 12:00:00 AM

Universal time after setTime is 13:27:06
Standard time after setTime is 1:27:06 PM

After attempting invalid settings:

Universal time: 00:00:00

Standard time: 12:00:00 AM

Time Class Case Study

10

 Member functions are declared in a class

definition but defined outside of class definition

 Still in the class scope

 Can be accessible by other member functions of
the class directly

 Outside functions can access member functions
using:

 Object of the class

 Reference to an object of the class

 Pointer to an object of the class

 Binary scope resolution operator

Time Class Case Study

11

 Using class Time

 Time time1;

 Time timeAr[20];

 Time &timeRef = time1;

 Time *timePtr = &time1;

Class Scope and Accessing Class Members

12

 Class scope contains:

 Data members

 Member functions

 Nonmember functions are defined at file scope

 Variables declared in a member function

 Have block scope

 Known only in that function

Class Scope and Accessing Class Members

13

 Dot member selection operator (.)

 Accesses the object’s member

 Used with an object’s name or with a reference to

an object

 Arrow member selection operator (->)

 Accesses the object’s members

 Used with a pointer to an object

Access Functions and Utility Functions

14

 Access functions can read or display data

 They can test the truth or falsity of conditions

 They are also called predicate functions

 Utility functions are private member functions

that help the operation of public member

functions

 Utility functions are not part of the class public

interface

Constructors with Default Arguments

15

 To initialize data members to a consistent

state, constructors can specify default

arguments

 If no values are provided in a constructor call,

default arguments are used.

 They can be invoked with no arguments

 Max one default constructor per class

Destructor

16

 A special member function like constructor

 Name is the tilde character (~) followed by the

class name

 Destructors are called when an object is

destroyed

 They receive no parameter and returns no

value

 A class may have only one destructor

 If a destructor is not provided, the compiler

creates one empty destructor.

When Constructors and Destructors are Called

17

 Constrcutors and destructors are called

implicitly by the compiler

 Generally destructor calls are made in the

reverse order of the corresponding constructor

calls

 Storage classes of objects can alter the order.

Default Memberwise Assignment

18

 Assignment operator (=) can be used to assign

an object of class to another object of the

same type.

 Each data member of the right object is

assigned to the same data member of the left

object.

 Can crate problem if data members contain

pointers to dynamically allocated memory

