PHY 203- PHYSICS III

Introduction to Modern Physics

BOOKS

Optics:

Physics II For Scientists And Engineers (Textbook)

Authors: Serway ve Beichner

Chapters: 35-38

Optics

Author: Eugene Hecht

Modern Physics:

Physics III For Scientists And Engineers (Textbook)

Authors: Serway ve Beichner

Chapters: 39-42

Modern Physics for Scientists and Engineers

Authors : S. T. Thornton ve A. Rex

Chapters: 1-10

Modern Physics is Physics of 20th Century

- > 19th century physicists thought they had it all together.
- > There were a lot of surprises for them.
- Modern physics is the story of these surprises.
- Modern physics is the physics that changed the world.
- > The aim of this class is to introduce you to these new and exciting topics.

What are the differences between classical physics and modern physics?

Classical physics:

Physics developed before 1895.

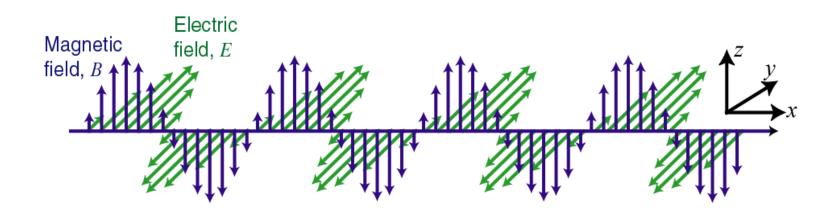
Deals with matter that can be seen and energy.
There are a lot of inventions based on classical physics such as automobiles, electric generation, CD players, space crafts, ABS breaks etc.

Modern physics:

Physics developed after 1895.

Deals with very small and very big objects and energy.

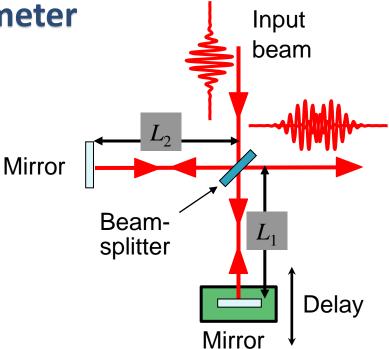
What are the subjects of classical physics?

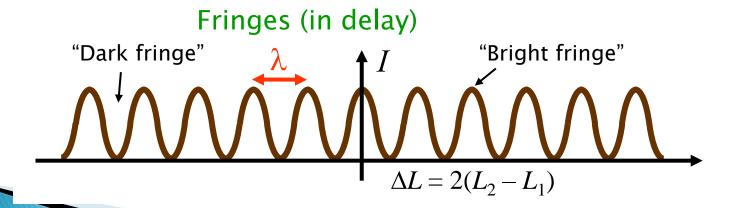

- Classical physics of 1890s
 - Mechanic-Galileo, Newton
 - Electromagnetism-Maxwell
 - Thermodynamics
- Kinetic theory of gases
- Waves and particles
- Conservation principles and fundamental forces
- Atom theory

Subjects of this lectures?

- Nature of light and optics
- Relativity
- Intoduction to quantum physics
- Quantum mechanics and atom physics

Light is an electromagnetic wave.


The electric (E) and magnetic (B) fields are in phase.



The electric field, the magnetic field, and the propagation direction are all perpendicular.

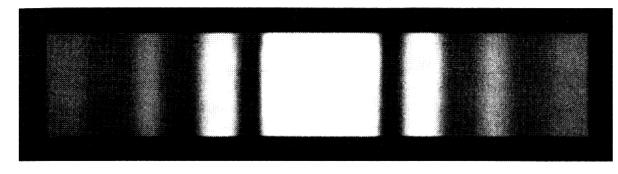
The Michelson Interferometer

■The Michelson Interferometer deliberately interferes two beams and so yields a sinusoidal output intensity vs. the difference in path lengths.

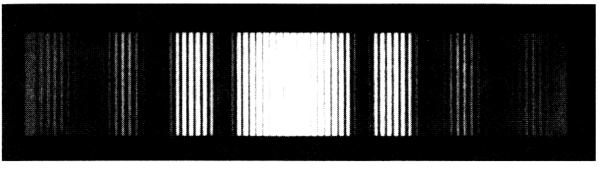
What did Michelson & Morley change?

Before the experiment of Michelson-Morley it was thought that classical physics was enough to explain every physical phenomena? After the experiment it was obvious that classical physics could not explain the followings:

- 1- Matter moving with very high speed
- 2- Matter with big scales (gravitational forces)
- 3- Matter with small scales (atoms, electrons, etc.)


New theories were needed to explain these problems:

- 1) Spetial relativity solved the first problem
- 2) General relativity solved the second problem
- 3) Quantum mechanic solved the third problem


Diffraction from one- and two-slit screens

Diffraction patterns

One slit

Two slits

As a summary these are the subject of this class:

- Nature of light and optics
- Relativity
- Intoduction to quantum physics
- Quantum mechanics and atom physics