

Polymerase Chain Reaction

Lecture Content

- Definition
- History
- Intracelluler DNA replication
- PCR contents
- PCR basic principles
- Where to use PCR?
- Advantages and disadvantages
- PCR optimisation
- PCR inhibitors and enhancers
- Troubleshooting

PCR definition

- *in-vitro* enzymatic synthesis of the copies of a specific DNA fragment by the help of small oligonucleotides called "primers"
- *in-vitro* amplification of nucleic acids
- DNA photocopy
- samanlıkta iğne aramak yerine samanlıktaki iğnelerin sayısını çoğaltmak

Short History of PCR:

- **1971** *Khorana et al.* Developed a method replicating a specific region of an double-stranded DNA by the help of two DNA synthesis primers 3' ends of which are opposed to each other
- 1983 Kary Mullis (Cetus firm) developed PCR

Kary B. Mullis

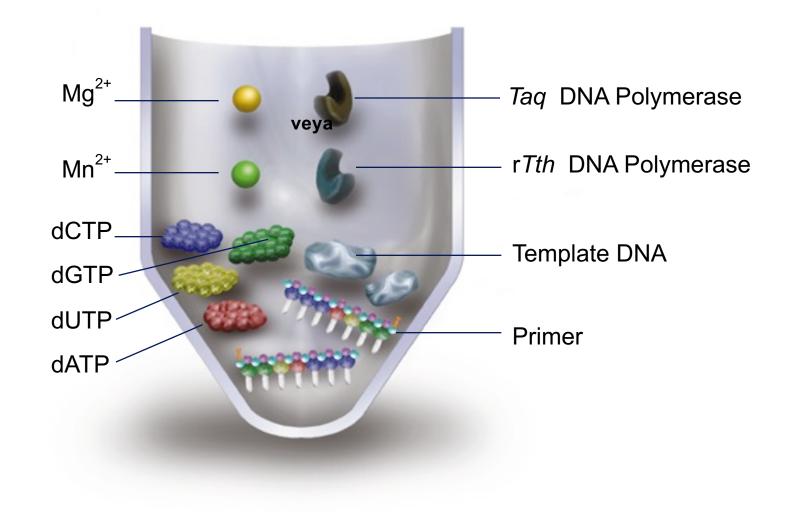
- **1985** First report of *PCR with a DNA polymerase I Klenow fragment (Saiki et al., 1988).*
- **1988** First application of PCR by the help of first time use of Taq polymerase
- **1993** *Kary Mullis awarded Nobel Prize in Chemistry*
- **1993** Licences of PCR technology and Taq polymerase enzymes were bought by the world leader commercial firms

Intracellular DNA replication

- DNA replication occurs at 37° C
- Helper proteins like single strand binding proteins are used in replication
- A RNA primer of 12 nucleotide are formed by an enzyme "primase" in the origin of replication
- DNA polymerase binds to this enzyme and synthesis DNA by binding nucleotides to 3' end

PCR

Reaction content


- Reaction buffer
- Template DNA
- Primers
 - Forward ve reverse
- Nucleotides
 - DNA synthesis
- Polymerase
 - Taq DNA polymerase
- MgCl₂
 - Enyzme activity

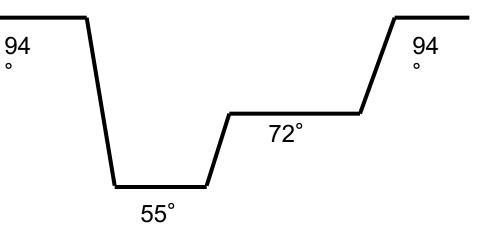
• Temperature control

- PCR equipment (thermal cycler)
- Automatic regulation of temperature by steps and cycles

PCR mix contents

Characteristics of Primers

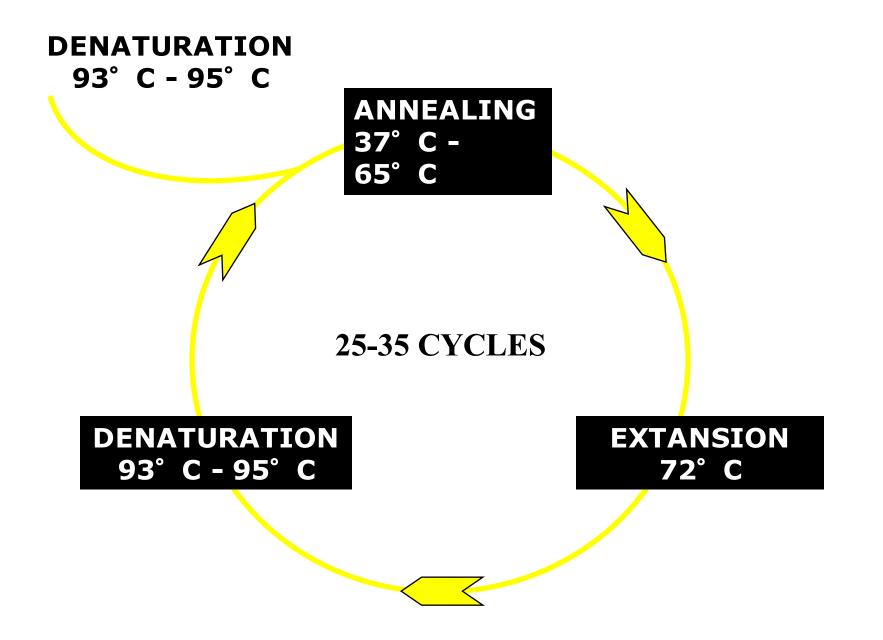
- 18-30 nucleotides
- F and R primers should have similar Tm values
- G+C content ~ 50%
- Primer should end with G or C at the 3' end
- Primers should not end with A or T
- Sequences those could form hairpins should be inhibited
- Primers should not be complementary to each other


PCR

• How does PCR work?:

- Separation of two strands from each other (94°C)
- Annealing of Primers (55°C)
 - Beginning of Replication
- Extension

(polymerisastion) (72°C)


- = replication
- Repeat for 20-30 times (cycles)

CYCLE PARAMETRES

Denaturation;	93°C-95°C	
	30 sec – 1 min	
Annealing;	37°C-65°C	
	30 sec – 1 min	
Extension; 72°	С	
	1 min (For every 500 bp	DNA add + 30 sec)
25-35 cycles		
Final exstantion	2-10 min	

ST.

Basic PCR conditions

- 25-50-100 μ l final reaction volumes
- Template DNA 1-1000ng
- Primers 10-20 pmols
- 10 mM Tris-CL pH 9.0, 50 mM KCl (10xPCR buffer)
- $MgCl_2 0.5-3.0 \text{ mM}$

• final concentration of each dnTPs would be 200 μ M dNTP'ler: dATP, dGTP, dTTP, dCTP

1 unit Taq polymerase enzyme

REACTION MIXTURE

25 or 50[§]I final volume Eppendorf (0.2 ml) tube

COntents	Volumes	Final Concentration
10 X PCR Buffer	5 <u>*</u> I	1X
10 X dNTPs (2mM)	5 <u>¥</u> I	200 <u>∲</u> M
Forward primer (10pmols/½I)	5 <u>1</u>	1 IM (50pmols/50 I)
Reverse primer (10pmols/½I)	5 <u>¥</u> I	1 ½M (50pmols/50 ½l)
Genomic DNA template	2 <u>¥</u> I	1 <u>†</u> g
Taq polymerase (2U/½I)	0.5 <u>¥</u> l	1 unit
H ₂ O (to 50 [§] I Final volume)	27.5 <u>*</u> l	