DNA IMMUNIZATION

Week 13

AŞILAR

KONVANSİYONEL 1.İnaktif aşılar 2.Canlı aşılar attenue aşılar kültür attenue konak attenue doğal attenue (mutant) heterolog aşılar tam virulent aşılar 3. Toksoid aşılar 4.Subunit aşılar

BİYOTEKNOLOJİK 1.Sentetik peptidler 2.Anti-idiotip aşılar 3.Genetik mühendisliği teknikleri rekombinant antijenler (kategori I) genetik-attenue organizmalar (kategori II) canlı rekombinant organizmalar (kategori III) 4.DNA aşıları

DNA Immunization

Instead of delivering the agent to the body, an antigen belonging to the agent, the plasmid containing the DNA sequence (gene) encoding the antigen is administered using controlled conditions, appropriate methods and methods, and the target (protective) antigen is produced and presented to the immune system in cells receiving the plasmid or plasmid transfected. It is called DNA IMMUNIZATION.

Gene cloning

•Obtaining identical copies of a gene

•The gene encoding the synthesis of an important product (or protein) is excised from the genome (or chromosome) of the cell (prokaryotic or eukaryotic) to which it belongs, by special methods, it is combined with a carrier vector DNA and transferred to a recipient cell (prokaryotic or eukaryotic) is the expression of the gene in the cell.

Important steps in gene cloning

Obtaining pure gene carrying DNA (or RNA),

- Determining the location of the gene,
- Removal of the gene
- Obtaining the carrier (vector) DNA,
- Combining gene DNA with vector DNA,
- Transferring the resulting recombinant vector DNA to the recipient cell,
- Selection,
- Checking the gene product

Components of an Ideal Plasmid

- A strong eukaryotic promoter,
- A cloning site for the insertion of the gene belonging to the pathogen,
- A polyadenylation-termination sequence,
- A prokaryotic origin of replication,
- A marker enabling selection, such as an ampicillin-resistance gene (amp)

Model	Antijenler	Hayvanlar	Şekillenen
			hücreler
HSV-1	gB	Fare/BALB/c	T hücreleri
zosteriform			
HSV-1	ICP27	Fare/BALB/c	T hücreleri
zosteriform			
HSV-1-CTL in	gB and ICP27	Fare/BALB/c/	T hücreleri
vitro		C57.B46	
HSV-2	gD	Fare/BALB/c	B hücreleri
vaginitis			
HSV-2	gD	Guinea pig	B hücreleri
vaginitis			
Bovine herpes	gIV	Fare/BALB/c	B hücreleri
virus			
Influenza lung	NP	Fare/BALB/c	T ve B
			hücreleri
Influenza lung	HA	Tavuklar	B hücreleri
Influenza lung	NP	Fare/BALB/c	T ve B
			hücreleri
Influenza lung	HA	Tavuklar	B hücreleri
Influenza	NP	Ferretler ve	B hücreleri
		Afrika yeşil	
		maymunları	
Influenza lung	HA	Fare/BALB/c	B hücreleri
Rabies-I/M	G-protein	Fare/BALB/C3	T ve B
		H/ HEN	hücreleri
Rabies-I/M	G-protein	Fare/C3H/HEN	T ve B
			hücreleri
LCMV I/C	NP	Fare/BALB/c	T ve B
			hücreleri
LCMV I/C	NP	Fare/C57BL/6	T ve B

Model	Antijenler	Hayvanlar	Şekillenen hücreler
Hepatitis C	Core protein	Fare/BALB/c	T ve B
virus			hücreleri
Hepatitis B	HBs Ag	Fare/BALB/c	T ve B
virus			hücreleri
Hepatitis B	HBs Ag	Fare/BALB/c	T ve B
virus		C57BL/6	hücreleri
Hepatitis B	HBc Ag	C57BL/6J	T ve B
virus			hücreleri
HIV	gp 160	Fare/BALB/c	T ve B
			hücreleri
HIV	gp 120	Fare/BALB/c	T hücreleri
SIV	env ve gag	Rhesus	T hücreleri
		maymunları	
SV-40	Tümör antijeni	Fare/BALB/c	T ve B
			hücreleri
Plasmodium	Circumsporozoi	Fare/BALB/c	T ve B
yoelii	t protein		hücreleri
Plasmodium	CSP, PyHep17	Fare/BALB/c	T ve B
yoelii			hücreleri
Leishmania	gp 63	Fare/BALB/c	T hücreleri
major			
Mycoplasma	Bütün antijenler	Fare	T ve B
pulmonis	ELI		hücreleri
Mycobacteriu	M. leprae HSP	Fare/BALB/c	T hücreleri
m tuberculosis	65		

TABLO1DNA Aşılarında Kullanılan Deney HayvanıModelleri

Comparison of DNA vaccines with others

- Plasmid DNA purity, ease of production, physico-chemical stability,
- Various combinations of immunogens in a single dose
- Cheaper in vaccine production and distribution than subunit vaccines and recombinant proteins,
- Expression of vaccine antigens in natural form in DNA-provided transfer,
- Both CD4 + helper T cell and CD8 + CTL response
- Repeatability of plasmids without being affected by the existing vector specific immunity,
- Immunity formation in very young animals even in the presence of maternal antibodies,
- Production of vaccine encoded proteins in vivo, continuous and low levels, high affinity T and B cells

Advantages of DNA Vaccines

- Any DNA sequence, even those containing long inserts, can be inserted into the plasmid.
- Plasmids can be lyophilized for long periods of time at room temperature when they are produced and purified in large quantities, the transport of vaccines is easy and cheap,
- The most reliable way to prepare immunogen against harmful agents such as Ebola virus,
- Long-term antigen expression provides long-term T cell response and immunological memory formation,
- The potential to encode multiple antigens, including molecules that may affect the nature of the immune response.
- DNA vaccines encoding multiple epitopes,
- T cell response generation associated with protection rather than tissue damage

Disadvantages of DNA Vaccines

- The necessity of antigens to have protein character and difficulties in ensuring their glucosylation
- Important possibilities regarding DNA vaccines
- Integration of plasmid DNA into the host genome leading to insertional mutations and tumor formations
- autoimmune responses, including anti-DNA antibodies
- Cessation of tolerance to self proteins due to tolerance formation or heavy antigen expression

Points to Consider in the Development of DNA Vaccines

- Absence or insufficient vaccines available (eg HIV, hepatitis C, influenza, tuberculosis, leishmaniosis, schistosomiosis, malaria)
- Nowadays, the costs of vaccination strategies reach prohibitive levels.
- The need for immunity in newborns

Promising Results of Recent DNA Vaccines

- CTL-based protection formation in MHC haplotype in mice vaccinated against malaria (malaria) multigene
- Reports of high protection against agents with antigenic variability such as influenza virus
- Protective immunity formation in chimpanzees against infection shaped by heterologous strain of HIV
- Elimination of persistent mycoplasmal pneumonia in mice with vaccination after exposure to the agent.

Uses of DNA Vaccines

- Bacterial Infections
- Viral Infections
- Parasitic Infections
- Tumors

Bacterial Infections

- Brucellosis
- Lyme Disease
- Mycoplasmosis
- Salmonellosis
- Tetanus
- Tuberculosis

Other DNA Vaccines

Viral Infections

- Influenza virus
- bovine herpes virus
- Human herpes simplex virus
- rabies virus
- lymphocytic choriomeningitis virus
- cottontail rabbit papilloma virus

• hepatitis B virus

• HIV virus

Parasitic Infections

- Schistosoma japonicum
- Leishmania major
- Plasmodium yoelii

Tumors

