CEN 3311 HEAT TRANSFER



Heat flow through a
cylinder: (Radial system):

* Consider a long thich-walled cylinder. (hollow
cylinder)

r; = inside Radius

r, = outside Radius

L = length

T; = temperature of the inside surface

T, = temperature of the outside surface

% >> = It may be assumed that heat flows only
in a radial direction

“one-dimensional heat flow”

steady-state conditions.




Fourier’s law:

i_—kd—T (q_)qr)

A, dr

The area for heat flow in the cylindrical
system is
A, = 2nrlL
(The area normal to the direction of
heat transfer)

Therefore;
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Circular cross section

Electrical analog
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This equation can be put in a more convenient form as follows:
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Composite Cylinder
Wall

Let’s consider a composite wall system and draw its
electrical analogue.

* The centers of the cylinders are common.

* Atypical example of this system is a heat
exchanger having vapour inside.

The cyclinder is insulated by three layers of
insulators.

L/D > 1 = the heat flow is only in the direction of r L)

steay-state conditions = the heat flow rate (q) is the T T
same through all insulators. 1 T, 3 Ty

q= constant
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Spheres:

Spherical systems may be treated as one-dimensional when the temperature is a function of radius
only. For steady-state heat flow through a sphere:
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Heat transfer area is variable. It is a function of (r).




* One dimensional steady-state heat flow:
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* Through a sphere:q = %
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* Through a cylinder: q =




