CEN 3311 HEAT TRANSFER

UNSTEADY-STATE CONDUCTION

INSTEADY-STATE CONDUCTION
If the temperature of the solid is changing with time, this is unsteady state
condition and the situation is more complex than steady state condition.
We will consider here the general case wher **CONDUCTION**

If the temperature of the solid is changing with time, this is unsteady state

condition and the situation is more complex than steady state condition.

We will consider here the general case where the temper UNSTEADY-STATE CONDUCTION
If the temperature of the solid is changing with time, this is unsteady state
condition and the situation is more complex than steady state condition.
We will consider here the general case where **UNSTEADY-STATE CONDUCTION**
If the temperature of the solid is changing with time, this is unsteady state
condition and the situation is more complex than steady state condition.
We will consider here the general case wher

ENERGY BALANCE

ENERGY BALANCE
Cartesian Coordinates:
For the element of thickness of dx, the following energy **ENERGY BALANCE**
Cartesian Coordinates:
For the element of thickness of dx, the following energy
balance may be made:
[Rate of energy] [Rate of energy]]

\n $\begin{bmatrix}\n \text{Rate of energy} \\ \text{conducted into} \\ \text{the element}\n \end{bmatrix}\n +\n \begin{bmatrix}\n \text{Rate of energy} \\ \text{generated inside}\n \end{bmatrix}\n =\n \begin{bmatrix}\n \text{Rate of energy} \\ \text{conducted out} \\ \text{of the element}\n \end{bmatrix}\n +\n \begin{bmatrix}\n \text{Rate of energy} \\ \text{accumulated} \\ \text{stored inside}\n \end{bmatrix}$ \n

Rate of energy conducted into the element: $\bm{q} \big|_{x} = -kA \frac{\partial T}{\partial x}$
Rate of energy generated within element: $\bm{q}_{gen} = \dot{\bm{q}} A d x \ \ (Adx = dV)$ ∂T ∂x Rate of energy conducted into the element: $q \big|_{x} = -kA \frac{\partial T}{\partial x}$

Rate of energy generated within element: $q_{gen} = \dot{q} A dx$ (Adx = dV)

Rate of energy conducted out off the element: $q \big|_{x+dx} = \left[-kA \frac{\partial T}{\partial x} \right]$ Rate of energy conducted into the element: $q \big|_{x} = -kA \frac{\partial T}{\partial x}$

Rate of energy generated within element: $q_{gen} = \dot{q} A dx$ ($\Delta dx = dV$)

Rate of energy conducted out off the element: $q \big|_{x+dx} = \left[-kA \frac{\partial T}{\partial x} \big|_{x+dx} \right]$

 ∂T $\partial x\rfloor_{x+dx}$

$$
=-A\left[k\frac{\partial T}{\partial x}+\frac{\partial}{\partial x}\left(k\frac{\partial T}{\partial x}\right)dx\right]
$$

Rate of energy conducted into the element: $q \big|_{x} = -kA \frac{\partial T}{\partial x}$

Rate of energy generated within element: $q_{gen} = \dot{q} A dx$ (Adx = dV)

Rate of energy conducted out off the element: $q \big|_{x+dx} = \left[-kA \frac{\partial T}{\partial x} \big|_{x+dx} \right]$ $\frac{\partial T}{\partial x}dx$ $\rho dV = \rho A dx$ Rate of energy stored inside the element: $\rho C_p A \frac{\partial T}{\partial t} dx$

Taylor series expansion:
\n
$$
f(a) = f(a_0) + f'(a_0)(a - a_0) + f''(a_0)\frac{(a - a_0)^2}{2!} + \cdots
$$
\n
$$
\downarrow
$$
\nLinear part (first 2 terms)
\n
$$
f(a) = f(a_0) + f'(a_0)(a - a_0)
$$
\nIn our case:
\n
$$
f(a_0) = q \big|_{x} \qquad f(a) = q \big|_{x + dx}
$$

$$
f(a) = f(a_0) + f'(a_0)(a - a_0)
$$

$$
f(a_0) = q \Big|_{x} \qquad f(a) = q \Big|_{x+dx}
$$

$$
q \Big|_{x+dx} = q_x + \frac{\partial}{\partial x} (q \Big|_{x})(x+dx-x)
$$

$$
q \Big|_{x+dx} = \left(-kA \frac{\partial T}{\partial x} \right) + \left(-A \frac{\partial}{\partial x} k \frac{\partial T}{\partial x} \right) dx
$$

$$
q \Big|_{x+dx} = -A \Big[k \frac{\partial T}{\partial x} + \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) dx \Big]
$$

Here:
$$
\dot{q} \rightarrow
$$
 energy generated per unit volume, $W/_{m^3}$
\n $C_p \rightarrow$ specific heat of material, $1/kg^0C$
\n $\rho \rightarrow$ density, $kg^0/_{m^3}$
\nCombining the relations above gives:
\n $-kA \frac{\partial T}{\partial x} + \dot{q}A dx = \rho C_p A \frac{\partial T}{\partial t} dx - A \left[k \frac{\partial T}{\partial x} + \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) dx \right]$
\n $\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \dot{q} = \rho C_p \frac{\partial T}{\partial t}$ One-dimensional heat conduction equation

$$
-kA\frac{\partial T}{\partial x} + \dot{q}A dx = \rho C_p A \frac{\partial T}{\partial t} dx - A \left[k \frac{\partial T}{\partial x} + \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) dx \right]
$$

$$
\frac{\partial}{\partial x}\left(k\frac{\partial T}{\partial x}\right) + \dot{q} = \rho C_p \frac{\partial T}{\partial t}
$$

$$
\frac{\partial}{\partial x}\left(k\frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y}\left(k\frac{\partial T}{\partial y}\right) + \frac{\partial}{\partial z}\left(k\frac{\partial T}{\partial z}\right) + \dot{q} = \rho C \frac{\partial T}{\partial t}
$$

Three-dimensional heat conduction equation

Figure Credit: Bergman, Lavine (2017) Fundamentals of Heat and Mass Transfer, 8th Ed.

$$
\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \phi^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}
$$

$$
\frac{1}{r}\frac{\partial^2}{\partial r^2}(rT) + \frac{1}{r^2\sin\theta}\frac{1}{\partial \theta}(\sin\theta\frac{\partial T}{\partial \theta}) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 T}{\partial \phi^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha}\frac{\partial T}{\partial t}
$$