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4.1 INTRODUCTION

A medical image is a Pictorial Representation of a 

measurement of an object or function of the body

CT PET CT & PET Images superimposed

Many different ways exist to acquire medical image data
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4.1 INTRODUCTION

Knowledge of image quality allows for comparison of imaging 

system designs:

� Within a modality, and 

� Across Different imaging modalities

This information can be acquired in 1-3 spatial dimensions

It can be Static or Dynamic, meaning that it can be measured 

also as a function of time
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4.1 INTRODUCTION

Fundamental properties associated with these data:

� No image can Exactly represent the object or function; 

at best, one has a measurement with an associated 

error equal to the difference between the true object 

and the measured image

� No two images will be Identical, even if acquired with 

the same imaging system of the same anatomic region

variability generally referred to as Noise
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4.1 INTRODUCTION

There are many Different ways to acquire medical image data

Regardless of the method, one must be able to judge the 

Fidelity of the image in an attempt to answer the question: 

How Accurately Does the Image Portray the Body 
or the Bodily Function?
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4.1 INTRODUCTION

This judgment falls under the rubric of 

Image Quality

Methods of Quantifying image quality are described 

in this chapter
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4.1 INTRODUCTION

Knowledge of image quality allows Comparison of:

� Various imaging system designs for a given modality 

and

� Information contained in images acquired by different 

imaging modalities

The impact of image quality on an imaging task, such as 

Detection of a lesion in an organ, can also be 

determined
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4.1 INTRODUCTION

Various imaging tasks require Differing Levels of image 

quality

An image may be of sufficient quality for One task, but 

inadequate for Another task

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 11
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4.1 INTRODUCTION

The metrics introduced here are much used in the following 

chapters in this Handbook as the

� Design

� Performance, and

� Quality Control

of different imaging systems are discussed

First, however, one needs to learn the meaning of:

High Image Quality
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4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

In all imaging systems the output, g, is a function of the input, f

The function, H, is usually called the Transfer Function or 

System Response Function

For a continuous 2D imaging system, this relationship can be 

written as:
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4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

The simple concept implies that we can predict the output of an 

imaging system

if we know the Input and the Characteristics of the system

That is, g is the Image of the Scene f

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 14
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4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

In this chapter, functions are expressed with Two dependent 

variables to represent a 2D image

This Convention is chosen to ensure consistency through the 

chapter, however the imaging problem can be treated in Any
number of dimensions
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4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

The image, g(x,y), portrays a cross-section of the thorax, f(x,y), 
blurred by the transfer function, H, of the imaging system:
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4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

Unfortunately, this general approach to image analysis is very 

difficult to use

It is necessary to compute the transfer function at Each
Location in the image for each unique object or scene

This analysis is greatly simplified when two fundamental 

assumptions can be made:

� Linearity and 

� Shift-Invariance 
abbreviated jointly as LSI

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 17
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A linear system is one in which the output of the system can be 

expressed as a Weighted Sum of the input constituents

4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

Linearity

Thus, if a system presented with input f1 results in output:

and input f2 results in output:

then:

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 18
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In general, most imaging systems are either

� Approximately linear or

� Can be linearized or

� Can be treated as being linear over a small range

The Assumption of Linearity lets us formulate the transfer 

function as an integral of the form

4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

Linearity
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However, most modern imaging systems are Digital

As a result, images consist of measurement made at specific 

locations in a Regular Grid

With Digital systems, these measurements are represented 

as an array of Discrete values

4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

Linearity
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In the Discrete case,

our expression can be reformulated as multiplication of a matrix H

where the input scene and output image are given as Vectors (for 

1D images) or Matrices (for higher dimension images):

g = Hf

4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

Linearity
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In this formulation, each element in g is called a Pixel or 

Picture Element

Each element in f is called a Del or Detector Element

A pixel represents the smallest region which can uniquely 

encode a single value in the image

By similar reasoning, the term Voxel or Volume Element is 

used in 3D imaging

4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

Linearity
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In the expression for the imaging system:

g is expressed as a weighted sum, H, of the source signals, f

It is important to note that H or H is still quite complicated

If g and f have m x n elements

then H has (mn)2 elements

that is, there is a Unique transfer function for each pixel in the image because the 

value of each pixel arises from a different weighted sum of the dels

4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

Linearity
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A system is shift invariant if the system response function, H, 

does not change as a function of position in the image

By further adding the stipulation of shift-invariance, it is possible to formulate the 

transfer function without reference to a specific point of origin

This allows us to write the integration in our expression as a 

convolution:

where h is now a function of 2 variables

while H was a function of 4 variables
in the case of a 2D imaging system

4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

Shift Invariance
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In the discrete formulation of a shift invariant system, the matrix 

H now has a unique property; it is Toeplitz

As a practical measure, we often use a circulant approximation 

of the Toeplitz matrix

This approximation is valid Provided the PSF is small compared 

to the size of the detector

4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

Shift Invariance
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The discrete Fourier transform of the circulant approximation of 

H is a diagonal matrix

This property has particular appeal in analysing LSI systems, as 

we have gone from a formulation in which H has:

as many as (mn)2 non-zero elements to one that

has exactly mn distinct elements

4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

Shift Invariance
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As a result, it is possible to construct a new matrix, h, from H
such that our expression can now be rewritten

4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

Shift Invariance

where * is the circulant convolution operator

In the case of 2D detectors and images f, g, and h are each 

matrices with m x n distinct elements which are cyclically 

extended in each direction

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 27
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The assumptions of Linearity and Shift-Invariance are key to 

making most imaging problems tractable

as there is now a common Transfer Function, h, that 

applies to each pixel in the image

4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

Shift Invariance
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Recalling that for Fourier transform pairs the Convolution in 

one domain corresponds to Multiplication in the other domain, 

we can now rewrite the last expression as:

4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

Shift Invariance

where the tilde (~) denotes the

discrete Fourier transform

This implies that an object with a given spatial frequency 

referenced at the plane of the detector will result in an image 

with exactly the same spatial frequency

although the Phase and Amplitude may change
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With few exceptions most systems are not truly shift-invariant

For Example

Consider a simple system in which a pixel in the image is equal 

to the Average of the matching del in the scene and the eight 

immediate neighbouring dels

The transfer function will be Identical for all interior pixels

However, pixels on the 4 Edges and 4 Corners of the image will have 

different transfer functions, because they do not have a Full 
Complement of neighbouring pixels upon which to calculate this 

average

4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

Shift Invariance
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That said, most systems can be treated as shift invariant (with 

regard to this Boundary Problem), provided the blurring (or 

correlation) between pixels is small compared to the size of the 

image

A Second strategy to ensure shift invariance is to consider the 

transfer function locally, rather than globally

This strategy allows one to ignore differences in the detector 

physics across the full-field of the detector, such as the oblique 

incidence of X-rays

4.2 IMAGE THEORY FUNDAMENTALS

4.2.1 Linear Systems Theory

Shift Invariance
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4.2 IMAGE THEORY FUNDAMENTALS
4.2.2 Stochastic Properties

In all real imaging systems, it is necessary to consider the 

degradation of the image from both:

� Blurring, given by the transfer characteristics, and the

� Presence of Noise

Noise can arise from a number of sources, including the:

� Generation of the signal carriers,

� Propagation and Transformation of these carriers 

through the imaging process, and

� Addition of Extraneous Noise from various sources 

such as the imaging electronics

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 32
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4.2 IMAGE THEORY FUNDAMENTALS
4.2.2 Stochastic Properties

Thus, it is necessary to modify the image transfer equation to 

include a term for the noise, n

Noise is generated from a Random process

As a result, the noise recorded in each image will be Unique

Any given image ġ will include a single realization of the noise,    

ṅ so that

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 33
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4.2 IMAGE THEORY FUNDAMENTALS
4.2.2 Stochastic Properties

Strictly speaking, some noise (e.g. X ray quantum noise) will 

be generated in the process of forming the scene, f, and hence

will be acted upon by the transfer function, H

while other noise (e.g. electronic readout noise)

will not have been acted upon by the transfer function

Equation Ignores This Distinction

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 34
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4.2 IMAGE THEORY FUNDAMENTALS
4.2.2 Stochastic Properties

Also, strictly speaking, all quanta do not necessarily 

experience the same transfer function

Variability in the transfer of individual quanta leads to the 

well-known Swank and Lubberts’ effects

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 35
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4.2 IMAGE THEORY FUNDAMENTALS
4.2.2 Stochastic Properties

The introduction of noise in images means that imaging 

systems have to be evaluated Statistically

The exact treatment of the images is dependent upon Both the 

nature of the noise present when the image is recorded and 

the imaging system

System linearity (or Linearizability) will help to make the 

treatment of images in the presence of noise tractable

In general, however, we also need to assume that the noise is 

Stationary
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4.2 IMAGE THEORY FUNDAMENTALS
4.2.2 Stochastic Properties

A stochastic noise process is Stationary if the process does 

not change when shifted either in time or in space

That is, the Moments of a stationary process will not

change based upon the time when observations begin

An Example is X ray quantum noise, because the probability 

of generating an X ray does not depend upon when the 

previous or subsequent X ray quanta are created

Similarly, in a shift-invariant imaging system, it does not 

matter which point on the detector is used to calculate the 

moments of a stationary process, as each point is nominally 

the same

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 37
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4.2 IMAGE THEORY FUNDAMENTALS
4.2.2 Stochastic Properties

A Wide-Sense Stationary (WSS) process is one in which only 

the mean and covariance are stationary

Since a Poisson process is fully characterized by the Mean
and a Gaussian process is fully characterized by the Mean 
and Variance, it is typical to only require an imaging process 

to be WSS

It is, in fact, common to treat the noise as being Gaussian and 

having Zero mean

In practice, this is sufficient for Almost All imaging systems
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4.2 IMAGE THEORY FUNDAMENTALS
4.2.2 Stochastic Properties

It should be noted that digital images consisting of Discrete
arrays of pixels or volume elements (voxels) are not strictly 

stationary

Shifts of the origin that are not commensurate with the pixel 

spacing will potentially result in different images being acquired

However,a system is said to be Cyclostationary if the 

statistical properties are unchanged by shifts in the origin of 

specific amounts

i.e. multiples of the pixel or voxel pitch

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 39
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4.2 IMAGE THEORY FUNDAMENTALS
4.2.2 Stochastic Properties

A system is Wide-Sense Cyclo-stationary if the mean and 

covariance are unchanged by specific shifts in the origin

In general, we can assume most digital imaging systems are 

wide-sense cyclo-stationary, at least Locally
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4.2 IMAGE THEORY FUNDAMENTALS
4.2.2 Stochastic Properties

To measure the signal in a pixel, exclusive of the noise, we 

may simply Average the value in that pixel over many images 

to minimize the influence of the noise on the measurement

In a similar fashion, we can estimate the noise in a pixel by 

calculating the Standard Deviation of the value of that pixel 

over many images of the same scene

Calculations which involve a large number of images are 

clearly Time-Consuming to acquire and process in order to 

estimate the mean and standard deviation with Sufficient 
Accuracy

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 41
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4.2 IMAGE THEORY FUNDAMENTALS
4.2.2 Stochastic Properties

However this problem is tremendously simplified if one can 

additionally assume Ergodicity

Ergodic Process: one in which the statistical properties of the 

ensemble can be obtained by analysing a single realization of 

the process

For example, X ray quantum noise is frequently referred to as 

White Noise, implying that:

� In different realizations all spatial frequencies are 

equally represented, or equivalently that 

� The noise from individual quanta are uncorrelated
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4.2 IMAGE THEORY FUNDAMENTALS
4.2.2 Stochastic Properties

White Noise is Ergodic

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 43
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4.2 IMAGE THEORY FUNDAMENTALS
4.2.2 Stochastic Properties

This means, for example, that we can calculate the average 

fluence of an X ray beam either by averaging over a Region or 

averaging over Multiple Images

When an appropriate imaging system is used to image an 

ergodic process (such as a uniform scene imaged with X rays), 

calculations performed from a number of sample images can 

be replaced by calculations from One Image

For Example, the noise in a particular pixel that was originally 

measured from image samples can now be measured from a 

region of a single image
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4.2 IMAGE THEORY FUNDAMENTALS
4.2.3 Sampling Theory

With few exceptions (notably screen-film radiography), 

modern imaging systems are Digital
A digital image is only defined as discrete

points in space, called sampling points

The process of sampling by a detector element (del) 

generally involves the integration of continuous signal values 

over a finite region of space around the sampling point

The Shape of these regions is defined by the Sampling 
Aperture

Distance between sampling points is called the Sampling
Pitch
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In an idealized 2D detector, the sampling aperture of each del is 

represented by a square of dimension, a′

Such dels are repeated with pitch a to cover the entire detector:

4.2 IMAGE THEORY FUNDAMENTALS
4.2.3 Sampling Theory

Rectangular array of dels in 

which a single del with a 

square aperture of dimensions 

a′ x a′ is shown centred upon a 

series of sampling points with 

pitch a in orthogonal directions
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It is not strictly necessary for the aperture and pitch to have the 

same size, nor to be square

For example, active matrix X ray detectors can have regions 

which are not radiation sensitive such as the data and control 

lines and del readout electronics

The Fill Factor of an active matrix detector is typically defined 

as the ratio a′2/a2

The Fill Factor is Commonly <1

4.2 IMAGE THEORY FUNDAMENTALS
4.2.3 Sampling Theory
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It is also possible for the del aperture to be >a2

For Example, in CR, the scanning laser will typically stimulate 

fluorescence from a circular region having a diameter greater 

than the sampling pitch

As discussed later, this has benefit in Reducing Aliasing

4.2 IMAGE THEORY FUNDAMENTALS
4.2.3 Sampling Theory
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The process of sampling a continuous signal f by a single del is 

given by:

4.2 IMAGE THEORY FUNDAMENTALS
4.2.3 Sampling Theory

where A is the aperture function and (xi, yi) are Integer indices 

of the del

In practice, the aperture function is Non-Zero over a limited 

area thus providing finite limits to the integral in this equation
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It is clear from this expression that if one were to shift the 

sampling points by a non-integer amount (i.e. 

incommensurate with the pixel pitch), the recorded image 

would vary

It is for this reason that digital systems are only

Cyclo-Stationary

In general these changes are small – especially for objects 

which are Large relative to the sampling pitch

However, for small objects, these changes can be significant

4.2 IMAGE THEORY FUNDAMENTALS
4.2.3 Sampling Theory
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Sampling a continuous signal f(x, y) on a regular grid with 

grid spacing a, is equivalent to multiplying f by a comb
function, comba

The comb function is an infinite sum of Dirac delta functions 

centred at the sampling points

Multiplication by the comb function in the image domain is 

equivalent to Convolution by the Fourier transform (FT) of 

the comb function in the Fourier domain

4.2 IMAGE THEORY FUNDAMENTALS
4.2.3 Sampling Theory

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 51



IAEA

The FT of the comb function is also a comb function, but with 

grid spacing 1/a

This convolution has the form:

4.2 IMAGE THEORY FUNDAMENTALS
4.2.3 Sampling Theory

This implies that the FT of f is replicated at each point on a 

grid with a spacing 1/a, and an infinite sum of all the 

replicates is taken
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The frequency 1/a is called the Sampling Rate

The Nyquist-Shannon sampling theorem provides Guidance
in determining the value of a needed for a specific imaging 

task:

Ideally, the Fourier spectrum of f should not have components 

above the frequency 1/2a

This frequency is called the

Nyquist Frequency

4.2 IMAGE THEORY FUNDAMENTALS
4.2.3 Sampling Theory
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When this condition is not 

met, the Fourier spectra will 

contain components with 

spatial frequencies which 

Exceed the Nyquist 

frequency, and the infinite 

sum of spectra will overlap

4.2 IMAGE THEORY FUNDAMENTALS
4.2.3 Sampling Theory
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This overlap between the superimposed spectra will result in 

Aliasing

Aliasing degrades the sampled image because it incorrectly
portrays high-frequency information present in the scene as 

lower-frequency information in the image

Black Curve in figure

To avoid aliasing, the Nyquist frequency must be greater than or 

equal to the maximum frequency in the image prior to sampling

In many system designs, it is Impossible to avoid aliasing

4.2 IMAGE THEORY FUNDAMENTALS
4.2.3 Sampling Theory
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4.3 CONTRAST
4.3.1 Definition

Contrast is defined as the ratio of the signal difference to the 

average signal

The rationale behind this is that a small difference is negligible 

if the average signal is Large, while the same small difference 

is readily visible if the average signal is Small

In general, in medical imaging, we will want to achieve the 

highest contrast possible to best visualize disease features
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4.3 CONTRAST
4.3.1 Definition

There are two common definitions of contrast in medical 

imaging

The Weber Contrast, or the Local Contrast, is defined as:

where ff and fb represent the signal of the feature and the 

background, respectively
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4.3 CONTRAST
4.3.1 Definition

Note: Contrast is defined in terms of the scene f

As we will see, it is equally acceptable to consider the contrast:

� Of the image g, or

� Measured at other points in the image chain

such as the contrast of a feature displayed on a computer monitor

The Weber Contrast is commonly used in cases where small 

features are present on a large uniform background
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4.3 CONTRAST
4.3.1 Definition

The Modulation or Michelson Contrast is commonly used for 

patterns where both bright and dark features take up similar 

fractions of the image

The Modulation Contrast is defined as:

where fmax and fmin represent the highest and lowest signals
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4.3 CONTRAST
4.3.1 Definition

The Modulation Contrast has particular interest in the Fourier 

analysis of medical images

Consider a signal of the form:

Substituting into the Modulation Contrast gives:

Thus, we see that the Numerator expresses the amplitude or 

difference in the signal B = (fmax-fmin)/2, while the Denominator
expresses the average signal A = (fmax+fmin)/2
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4.3 CONTRAST
4.3.1 Definition

Care should be taken as to which definition of contrast is used

The correct choice is situation dependent

In general, the Local Contrast is used when a small object is 

presented on a uniform background, such as in simple 

observer experiments (e.g., 2-AFC experiments)

The Modulation Contrast has relevance in the Fourier 

analysis of imaging systems
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4.3 CONTRAST
4.3.2 Contrast Types

In medical imaging, the Subject Contrast is defined as the 

contrast (whether local or modulation) of the object in the scene 

being imaged

For example:

� In X ray Imaging, the subject contrast depends upon the X 

ray spectrum, and the attenuation of the object and 

background

� In Radionuclide Imaging, the subject contrast depends 

upon radiopharmaceutical uptake by the lesion and 

background, the pharmacokinetics, and the attenuation of 

the gamma rays by the patient

Similarly, one can define the subject contrast for CT, MRI and ultrasound

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 62



IAEA

The Image Contrast depends upon the subject contrast and 

the characteristics of the imaging detector

For example:

In Radiographic Imaging, the image contrast is affected by

� the X Ray Spectrum incident upon the X ray converter 

(e.g. the phosphor or semiconductor material of the X 

ray detector)

� the converter Composition and Thickness, and

� the Grayscale Characteristics of the convertor, 

whether analogue or digital

4.3 CONTRAST
4.3.2 Contrast Types
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The Display Contrast is the contrast of the image as displayed 

for final viewing by an observer

The Display Contrast is dependent upon:

� the Image Contrast and

� the Grayscale Characteristics of the display device 

and

� any Image Processing that occurs prior to or during 

display

4.3 CONTRAST
4.3.2 Contrast Types
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4.3 CONTRAST
4.3.3 Grayscale Characteristics

In the absence of blurring, the ratio of the image contrast to the 

display contrast is defined as the Transfer Function of the 

imaging system

The grayscale response of Film is non-linear

Thus, to stay within the framework of LSI systems analysis, it is 

necessary to Linearize the response of the film
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4.3 CONTRAST
4.3.3 Grayscale Characteristics

This is typically done using a small-signals model in which the 

low-contrast variations in the scene recorded in the X-ray 

beam, ∆I/I0, produce linear changes in the film density, ∆D, 

such that

where γ is called the Film Gamma

and typically has a value of between 2.5 and 4.5
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4.3 CONTRAST
4.3.3 Grayscale Characteristics

Two grayscale response functions are shown:
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4.3 CONTRAST
4.3.3 Grayscale Characteristics

The Grayscale Characteristic, Γ, can now be calculated as:
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4.3 CONTRAST
4.3.3 Grayscale Characteristics

In a similar fashion, the grayscale characteristic of a digital 

system with a Digital Display can be defined

In general, digital displays have a non-linear response with a 

Gamma of between 1.7 and 2.3
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4.3 CONTRAST
4.3.3 Grayscale Characteristics

It should be noted that Γ does not consider the spatial 

distribution of the signals

In this sense, we can treat Γ as the response of a detector 

which records the incident X ray quanta, but does not record the 

Location of the X ray quanta

Equivalently, we can consider it as the DC (static) response of 

the imaging system
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4.3 CONTRAST
4.3.3 Grayscale Characteristics

Given that the Fourier transform of a constant is equal to a 

Delta Function at zero spatial frequency

we can also consider this response to be the

Zero Spatial Frequency Response

of the imaging system
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4.4 UNSHARPNESS

In the preceding discussion of contrast, we considered Large 
Objects in the Absence of blurring

However, in general, we cannot ignore either assumption

When viewed from the spatial domain, blurring reduces 

contrast of small objects

The effect of blurring is to spread the signal laterally, so that a 

focused point is now a Diffuse point
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4.4 UNSHARPNESS

One fundamental property of blurring is that the more the 

signal is spread out, the lower its intensity, and thus the lower 

the contrast

An image of a point is shown 

blurred by convolution with a 

Gaussian kernel of diameter 

16, 32 and 64 pixels
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4.4 UNSHARPNESS

This also means that the peak signal is only degraded if the 

size of the object is smaller than the width of the blurring 

function

The contrast of larger objects will not be affected:
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4.4 UNSHARPNESS
4.4.1 Quantifying Unsharpness

Consider the operation of an Impulse Function on an imaging 

system

If an imaging system is characterized by a LSI response 

function h(x-x’, y-y’), then this response can be measured by 

providing a Delta Function as input to the system

Setting f(x, y) = ∂(x, y) gives:
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4.4 UNSHARPNESS
4.4.1 Quantifying Unsharpness

We refer to the system transfer function as the point spread 

function, PSF, when specified in the spatial domain

In fact, the blurring of a point object, seen in

images, is a pictorial display of the PSF

It is common to consider the PSF either as being:

� Separable
or

� Circular Symmetric

where

depending upon the imaging system
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4.4 UNSHARPNESS
4.4.1 Quantifying Unsharpness

While it is possible to calculate the blurring of any object in the 

spatial domain via convolution with the LSI system transfer 

function, h, the problem is generally better approached in the 

Fourier Domain

To this end, it is informative to consider the effect of blurring on 

Modulation Contrast

Consider a sinusoidal modulation given by:

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 77



IAEA

4.4 UNSHARPNESS
4.4.1 Quantifying Unsharpness

The recorded signal will be degraded by the system transfer 

function

such that

Here, any Phase Shift of the image relative to the scene is 

ignored for simplicity

We see, therefore, that the modulation contrast of object f is
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4.4 UNSHARPNESS
4.4.1 Quantifying Unsharpness

The Modulation Contrast of the image, g, is:

We can now define a new function, T, called the Modulation 
Transfer Function (MTF), which is defined as the absolute 

value ratio of Cg/Cf at a given spatial frequency (u, v)
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4.4 UNSHARPNESS
4.4.1 Quantifying Unsharpness

The MTF quantifies the degradation of the contrast of a system 

as a function of spatial frequency

By definition, the modulation at zero spatial frequency, T(0,0)=1

In the majority of imaging systems, and in the absence of image 

processing, the MTF is bounded by 0 ≤ T ≤ 1

In addition, it should also be noted that based on the same 

derivation, the Grayscale Characteristic
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4.4 UNSHARPNESS
4.4.1 Quantifying Unsharpness

The measurement of the 2D PSF for projection or cross-

sectional imaging systems or 3D PSF for volumetric imaging 

systems (and hence the corresponding 2D or 3D MTF) requires 

that the imaging system be presented with an Impulse 
Function

In practice, this can be accomplished by imaging a pinhole in 

radiography, a wire in cross-section in axial CT, or a single 

scatterer in ultrasound

The knowledge of the MTF in 2D or 3D is useful in calculations 

in Signal Detection Theory
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4.4 UNSHARPNESS
4.4.1 Quantifying Unsharpness

It is more common, however, to measure the MTF in a Single
dimension

In the case of Radiography, a practical method to measure the 

1D MTF is to image a slit formed by two metal bars spaced 

closely together

Such a slit can be used to measure the LSF

Among other benefits, imaging a slit will provide better 

resilience to quantum noise, and multiple slit camera images 

can be superimposed (Boot-Strapped) to better define the tails 

of the LSF
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4.4 UNSHARPNESS
4.4.1 Quantifying Unsharpness

The LSF is, in fact, an Integral Representation of the 2D PSF

For example, consider a slit aligned vertically in an image

which here we assume corresponds to the y-axis

Then the LSF, h(x) is given by:

The integral can be simplified if we assume that the PSF is 

Separable:

as in video-based imaging systems
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4.4 UNSHARPNESS
4.4.1 Quantifying Unsharpness

It should be clear from this that the LSF and the 1D MTF are 

Fourier transform pairs

If we assume a Rotationally Symmetric PSF, as might be 

found in a phosphor-based detector, the PSF is related to the 

LSF by the Abel transform:

and
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4.4 UNSHARPNESS
4.4.1 Quantifying Unsharpness

Note that while the forward Abel transform is Tractable, the 

inverse transform is not

However, the inverse transform can be calculated by first 

applying the Fourier transform and then the Hankel transform:

The 1D forms of the 

system response function 

are shown, together with 

the functional relationship
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4.4 UNSHARPNESS
4.4.1 Quantifying Unsharpness

A further Simplification is to image an Edge, rather than a line

The Edge Spread Function (ESF) is simply an integral 

representation of the LSF, so that:

and
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4.4 UNSHARPNESS
4.4.1 Quantifying Unsharpness

Today, the ESF is the Preferred Method for measuring the 

system response function of radiographic systems

There are Two clear benefits:

� an edge is Easy to produce for almost any imaging 

system, although issues such as the position of the edge 

need to be carefully considered

� the ESF is amenable to measuring the Pre-Sampled 
MTF of digital systems
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4.4 UNSHARPNESS
4.4.2 Measuring Unsharpness

The spatial resolution is a metric to quantify the ability of an 

imaging system to display two unique objects closely 

separated in space

The limiting spatial resolution is typically defined as the 

maximum spatial frequency for which modulation is preserved 

without distortion or aliasing

Limiting Spatial Resolution
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4.4 UNSHARPNESS
4.4.2 Measuring Unsharpness

The limiting resolution can be measured by:

� Imaging line patterns or star patterns in radiography 

and

� Arrays of cylinders imaged in cross-section in cross-

sectional imaging systems such as CT and ultrasound

All of these methods use high-contrast, sharp-edged objects

Limiting Spatial Resolution
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4.4 UNSHARPNESS
4.4.2 Measuring Unsharpness

As such the limiting spatial resolution is typically measured in 

Line Pairs per unit length

This suggests that the basis functions in such patterns are 

Rect Functions

By contrast, the MTF is specified in terms of Sinusoids

This is specified in terms of spatial frequencies in Cycles per 

unit length

Limiting Spatial Resolution
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4.4 UNSHARPNESS
4.4.2 Measuring Unsharpness

There is no strict relationship between a particular MTF value 

and the limiting spatial resolution of an imaging system

The Coltman Transform can be used to relate the:

Square Wave Response
measured with a bar or star pattern

and

the Sinusoidal Response measured by the MTF

Limiting Spatial Resolution
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4.4 UNSHARPNESS
4.4.2 Measuring Unsharpness

Ultimately, however, the ability to detect an object (and hence 

resolve it from its neighbour) is related to the Signal to Noise 
Ratio of the object

As a Rule of Thumb, the limit of resolution for most imaging 

systems for high-contrast objects (e.g., a bar pattern) occurs at 

the spatial frequency where the

MTF ≈ 0.05 (5%)

Limiting Spatial Resolution
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4.4 UNSHARPNESS
4.4.2 Measuring Unsharpness

In practice, it is difficult to measure the MTF of an analogue 

system (such as film) without first digitizing the analogue image

As such, it is important that the digitization process satisfies the 

Nyquist-Shannon sampling theorem to avoid aliasing

This is possible in some instances, such as digitizing a film, 

where the digitizer optics can be designed to eliminate Aliasing

Modulation Transfer Function (MTF)
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4.4 UNSHARPNESS
4.4.2 Measuring Unsharpness

In this instance, however, the MTF that is measured is not the 

MTF of the film but rather is given by:

Modulation Transfer Function (MTF)

where Tm is the measured MTF, Ta is the MTF of the analogue 

system, and Td is the MTF of the digitizer

With this equation, it is possible to recover Ta provided Td > 0 

over the range of frequencies of interest
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4.4 UNSHARPNESS
4.4.2 Measuring Unsharpness

In many systems, however, it is not possible to avoid aliasing

For example, in a DR detector that consists of an a-Se 

photoconductor coupled to a TFT array

The Selenium has Very High Limiting Spatial 
Resolution

much higher than can be supported by the pixel pitch of the 

detector

Modulation Transfer Function (MTF)
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4.4 UNSHARPNESS
4.4.2 Measuring Unsharpness

This resolution pattern is made with such a system:

Modulation Transfer Function (MTF)

A digital radiograph of a 

bar pattern is shown

Each group in the pattern 

(e.g. 0.6 lp/mm) contains 

three equally spaced 

elements
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4.4 UNSHARPNESS
4.4.2 Measuring Unsharpness

Here, we can deduce that the 

limiting resolution is 3.4 lp/mm

Higher frequencies are aliased as 

shown by the reversal of the 

bands (highlighted in yellow) 

which arise from the digital 

sampling process

Modulation Transfer Function (MTF)

A magnified region of the pattern is shown:

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 97



IAEA

4.4 UNSHARPNESS
4.4.2 Measuring Unsharpness

In such instances, there are some important facts to understand

First, aliasing will occur with such a system, as can be seen

It is Unavoidable

This means, that predicting the exact image recorded by a 

system requires knowledge of the:

� Location of the objects in the scene relative to the 

detector matrix with sub-pixel precision, as well as the

� Blurring of the system prior to sampling

Modulation Transfer Function (MTF)
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4.4 UNSHARPNESS
4.4.2 Measuring Unsharpness

The latter can be determined by measuring what is known as 

the Pre-Sampling MTF

The pre-sampling MTF is measured using a high sampling 

frequency so that No Aliasing is present in the measurement

It is important to realise that in spite of its name, the pre-

sampling MTF does include the blurring effects of the sampling 

aperture

Modulation Transfer Function (MTF)
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4.4 UNSHARPNESS
4.4.2 Measuring Unsharpness

The pre-sampling MTF measurement starts with imaging a well-

defined edge placed at a small angle (1.5°- 3°) to the pixel 

matrix/array

From this digital image, the exact angle of the edge is detected 

and the distance of individual pixels to the edge is computed to 

construct a Super-Sampled (SS) edge spread function (ESF)

Differentiation of the SS-ESF generates a

LSF, whose FT gives the MTF

This is the Preferred Method for Measuring the MTF 
Today

Modulation Transfer Function (MTF)
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4.4 UNSHARPNESS
4.4.3 Resolution of a Cascaded Imaging System

In the previous section, we dealt with the special situation in 

which an analogue image, such as film, is digitized by a device 

such as a scanning photometer

In this situation, the measured MTF is the Product of the film 

MTF and the MTF of the scanning system

This principle can be extended to more generic imaging 

systems which are composed of a Series of individual 

components
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4.4 UNSHARPNESS
4.4.3 Resolution of a Cascaded Imaging System

Example of how a system MTF is the product of its components:

The overall or system MTF is the product of the MTFs of the three 

components A, B and C
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4.4 UNSHARPNESS
4.4.3 Resolution of a Cascaded Imaging System

A Classic Example is to compare the blurring of the focal spot 

and imaging geometry with that of the detector

Another classic example is of a video fluoroscopic detector 

containing an X ray image intensifier

In this instance, the MTF of the image is determined by the 

MTFs of the:

� Image intensifier

� Video camera

� Optical coupling
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4.4 UNSHARPNESS
4.4.3 Resolution of a Cascaded Imaging System

This is true because the image passes sequentially through 

each of the components, and each successive component 

sees an increasingly blurred image

The One Caveat to this concept is that aliasing must be 

addressed very carefully once sampling has occurred

The principle of Cascaded Systems Analysis is frequently 

used, as it:

� Allows one to determine the impact of each 

component on spatial resolution, and

� Provides a useful tool for analysing how a system 

design can be improved
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4.5 NOISE

The Greek philosopher Heraclitus (c. 535 B.C.) is claimed to 

have said that:

“You cannot step twice into the same river"

It can similarly be asserted that one can never acquire the 

same image twice

There Lies the Fundamental Nature of 
Image Noise
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4.5 NOISE

Noise arises as Random variations in the recorded signal 

(e.g. the number of X-ray quanta detected) from pixel-to-pixel

Noise is Not Related to Anatomy

Rather, it arises from the random generation of the image 

signal

Note, however, that noise is related for example to the 

number of X ray quanta; thus, highly attenuating structures 

(like bones) will look noisier than less attenuating structures
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4.5 NOISE

In a well-designed X-ray imaging system, X-ray quantum 

noise will be the Limiting Factor in the detection of objects

As illustrated, the ability to discern the disk is degraded as the 

magnitude of the noise is increased

The ability to detect an object is dependent upon both the 

contrast of the object and the noise in the image
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4.5 NOISE

The optimal radiation dose is just sufficient to visualize the 

anatomy or disease of interest, thus minimizing the potential for 

harm

In a seminal work, Albert Rose showed that the ability to 

detect an object is related to the ratio of the signal to noise

We shall return to this important result

However, first we must learn the Fundamentals of image noise
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4.5 NOISE
4.5.1 Poisson Nature of Photons

The process of generating X-ray quanta is Random

The intrinsic fluctuation in the number of X-ray quanta is called 

X-ray Quantum Noise

X-ray quantum noise is Poisson distributed

In particular, the probability of observing n photons given α, the 

mean number of photons, is

where α can be any positive number and n must be an integer
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4.5 NOISE
4.5.1 Poisson Nature of Photons

A fundamental principle of the Poisson distribution is that the 

variance, σ2, is Equal to the mean value, α

When dealing with large mean numbers, most distributions 

become approximately Gaussian

This applies to the Poisson distribution when a large number of 

X-ray quanta (e.g. >50 per del) are detected
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4.5 NOISE
4.5.1 Poisson Nature of Photons

The Mean-Variance Equality for X-ray quantum noise limited 

systems is useful experimentally

For Example, it is useful to test whether the images recorded 

by a system are limited by the X-ray quantum noise

Such systems are said to be X-ray quantum noise limited, and 

the X-ray absorber is called the Primary Quantum Sink

to imply that the Primary determinant of the image noise is the 

Number of X-ray quanta recorded
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4.5 NOISE
4.5.1 Poisson Nature of Photons

In the mean-variance experiment, one measures the mean and 

standard deviation Parametrically as a function of dose

When plotted Log-Log, the slope of this curve should be 1/2

When performed for digital X-ray detectors, including CT 

systems, this helps to determine the range of air kerma or 

detector dose over which the system is X-ray Quantum Noise 
Limited
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4.5 NOISE
4.5.2 Measures of Variance & Correlation/Co-variance

Image noise is said to be Uncorrelated if the value in each 

pixel is independent of the values in neighbouring pixels

If this is true and the system is Stationary and Ergodic, then it 

is trivial to achieve a complete characterization of the system 

noise

One simply needs to calculate the Variance (or Standard 

Deviation) of the image on a per-pixel basis
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4.5 NOISE
4.5.2 Measures of Variance & Correlation/Co-variance

Uncorrelated noise is called White Noise because all spatial 

frequencies are represented in equal amounts

All X-ray noise in images starts as white noise, since the 

production of X-ray quanta is Uncorrelated both in time and in 

space

Thus, the probability of creating an X-ray at any point in time 

and any particular direction does not depend on the previous 

quanta which were generated, nor any subsequent quanta
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4.5 NOISE
4.5.2 Measures of Variance & Correlation/Co-variance

Unfortunately, it is Rare to find an imaging system in which the 

resultant images are uncorrelated in space

This arises from the fact that each X-ray will create multiple 

Secondary Carriers which are necessarily correlated, and 

these carriers diffuse from a single point of creation

Thus the signal recorded from a single X-ray is often Spread
among several pixels

As a result the pixel variance is reduced and neighbouring pixel 

values are Correlated
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4.5 NOISE
4.5.2 Measures of Variance & Correlation/Co-variance

Noise can also be correlated by spatial non-uniformity in the 

imaging system - that is, Non-Stationarity

In most real imaging systems, the condition of stationarity is 

only Partially met

One is often placed in a situation where it must be decided if 

the stationarity condition is sufficiently met to treat the system 

as Shift Invariant
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4.5 NOISE
4.5.2 Measures of Variance & Correlation/Co-variance

An Example:

The image on the right is a measurement of the per-pixel variance on a 

small region indicated by yellow on the detector face

An early digital X-ray detector prototype is shown which 

consisted of a phosphor screen coupled to an array of fibre-

optic tapers and CCD cameras
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4.5.2 Measures of Variance & Correlation/Co-variance

The image on the right is a Variance Image, obtained by 

estimating the variance in each pixel using multiple images

i.e. multiple realizations from the ensemble

The image shows that there are strong spatial variations in the 

variance due to:

� Differences in the Coupling Efficiency of the fibre 

optics and the

� Sensitivity differences of the CCDs
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Noise can be characterized by the Auto Correlation at each 

point in the image, calculated as the ensemble average:

Here, we use the notation ġ to denote that g is a random variable

Correlations about the mean

are given by the Autocovariance Function

4.5 NOISE
4.5.2 Measures of Variance & Correlation/Co-variance
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Based on the assumption of Stationarity,

〈ġ(x, y)〉=  g, 

is a constant independent of position

If the random process is Wide-Sense Stationary, then both the 

autocorrelation and the autocovariance are independent of 

position (x, y) and only dependent upon displacement

4.5 NOISE
4.5.2 Measures of Variance & Correlation/Co-variance
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If the random process is Ergodic, then the ensemble average 

can be replaced by a spatial average

Considering a digital image of a stationary ergodic process, 

such as incident X-ray quanta, the autocovariance forms a 

matrix

4.5 NOISE
4.5.2 Measures of Variance & Correlation/Co-variance

where the region over which the calculation is applied is 2X × 2Y pixels
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The value of the Autocovariance at the origin is equal to the 

variance:

4.5 NOISE
4.5.2 Measures of Variance & Correlation/Co-variance

where the subscript A denotes that the calculation is performed over an 

aperture of area A, typically the pixel aperture
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4.5 NOISE
4.5.3 Noise Power Spectra

The correlation of noise can be determined in either the:

� Spatial Domain using autocorrelation (as we have 

seen in the previous section) or

� Spatial Frequency Domain using Noise Power 

Spectra (NPS)

also known as Wiener Spectra
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4.5 NOISE
4.5.3 Noise Power Spectra

There are a number of requirements which must be met for the 

NPS of an imaging system to be tractable

These include: Linearity, Shift-Invariance, Ergodicity and 

Wide-Sense Stationarity

In the case of digital devices the latter requirement is replaced 

by Wide-Sense Cyclo-Stationarity

If the above criteria are met, then the NPS completely 

describes the noise properties of an imaging system
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4.5 NOISE
4.5.3 Noise Power Spectra

In point of fact, it is Impossible to meet all of these criteria 

Exactly

For Example, all practical detectors have finite size and thus 

are not strictly stationary

However, in spite of these limitations, it is generally possible to 

calculate the Local NPS
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4.5 NOISE
4.5.3 Noise Power Spectra

By Definition, the NPS is the ensemble average of the square 

of the Fourier transform of the spatial density fluctuations

The NPS and the autocovariance function form a Fourier 
Transform Pair

This can be seen by taking the Fourier transform of the 

autocovariance function and applying the convolution theorem
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4.5 NOISE
4.5.3 Noise Power Spectra

The NPS of a discrete random process, such as when 

measured with a Digital X-ray detector, is:

This equation requires that we perform the summation over all
space

In practice, this is impossible as we are dealing with detectors 

of limited extent

By restricting the calculation to a finite region, it is possible to determine the 

Fourier content of the fluctuations in that specific region
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4.5 NOISE
4.5.3 Noise Power Spectra

We call this simple calculation a Sample Spectrum

It represents one possible instantiation of the noise seen by 

the imaging system, and we denote this by:

An estimate of the true NPS is created by averaging the 

sample spectra from M realizations of the noise
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4.5 NOISE
4.5.3 Noise Power Spectra

Ideally, the average should be done by calculating sample 

spectra from Multiple Images over the same region of the 

detector

However, by assuming Stationarity and Ergodicity, we can take 

averages over Multiple Regions of the detector

significantly reducing the number of images that we need to acquire

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 129



IAEA

4.5 NOISE
4.5.3 Noise Power Spectra

Now, the estimate of the NPS, Ẅ, has an accuracy that is 

determined by the number of samples used to make the 

estimate

Assuming Gaussian statistics, at frequency (u, v), the error in 

the estimate Ẅ(x, y) will have a standard error given by:

where c=2 for u=0 or v=0, and c=1 otherwise

The values of c arise from the circulant nature of the Fourier transform
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4.5 NOISE
4.5.3 Noise Power Spectra

Typically, 64 x 64 pixel regions are sufficiently large to 

calculate the NPS

Approximately 1000 such regions are needed for good 2-D 

spectral estimates

Remembering that the autocorrelation function and the NPS 

are Fourier transform pairs, it follows from Parseval’s 
Theorem that

This provides a useful and rapid method of verifying a NPS calculation

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 131



IAEA

4.5 NOISE
4.5.3 Noise Power Spectra

There are Many Uses of the NPS

It is most commonly used in characterizing imaging device 

Performance

In particular, the NPS is exceptionally valuable in investigating 

Sources of detector noise

For Example, poor grounding often causes line-frequency 

(typically 50 or 60 Hz) noise or its harmonics to be present in 

the image

NPS facilitates the identification of this noise
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4.5 NOISE
4.5.3 Noise Power Spectra

In such applications, it is common to calculate

Normalized Noise Power Spectra (NNPS)

since the absolute noise power is less important than the 

relative noise power

As we shall see, absolute calculations of the NPS are an 

integral part of DQE and NEQ measurements, and the NPS is 

required to calculate the SNR in application of signal-detection 

theory
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4.5 NOISE
4.5.3 Noise Power Spectra

Unlike the MTF, there is no way to measure the 

Pre-Sampling NPS

As a result, high frequency quantum noise (frequencies higher 

than supported by the sampling grid) will be aliased to lower 

frequencies in the same way that high frequency signals are 

aliased to lower frequencies

Radiation detectors with high spatial resolution, such as a-Se 
Photoconductors, will naturally alias high frequency noise
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4.5 NOISE
4.5.3 Noise Power Spectra

Radiation detectors based on Phosphors naturally blur both 

the signal and the noise prior to sampling

And thus can be designed so that both signal and noise 

aliasing are not present

There is No Consensus as to whether noise aliasing is 

beneficial or detrimental

Ultimately, the role of noise aliasing is determined by the 

imaging task, as we shall see later
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4.5 NOISE
4.5.3 Noise Power Spectra

As with the MTF, it is sometimes preferable to display 1D 

sections through the 2D (or 3D) noise power spectrum or 

autocovariance

There are two presentations which are used:

the Central Section

and

the Integral Form
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4.5 NOISE
4.5.3 Noise Power Spectra

Similarly, if the noise is Rotationally Symmetric, the noise 

can be averaged in annular regions and presented radially

The choice of presentation depends upon the intended use

It is most Common to present the central section

Regardless, the various 1D presentations are easily related by 

the central slice theorem, as shown in the next slide
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4.5 NOISE
4.5.3 Noise Power Spectra

Here, the relationships for rotationally symmetric 1D noise power 

spectra and autocovariance functions are shown

Both 1D integral and central sections of the NPS and 

autocovariance can be presented

The various 

presentations are 

related by integral (or 

discrete) 

transformations
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4.5 NOISE
4.5.4 NPS of a Cascaded Imaging System

The propagation or cascade of noise is substantially more 

complicated than the composition of the MTF

A proper analysis of noise must account for
the Correlation of the various noise sources

These can be numerous, including:

� The primary X-ray Quantum Noise

� The noise arising from the Transduction of the primary 

quanta into secondary quanta (such as light photons in a 

phosphor or carriers in a semiconductor)

� Various Additive Noise Sources such as electronic noise 

from the readout circuitry of digital detectors
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4.5 NOISE
4.5.4 NPS of a Cascaded Imaging System

While the general theory of noise propagation is beyond the 

scope of this work, the two simple examples which follow may 

be illustrative:

� Image Subtraction

� Primary & Secondary Quantum Noise
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4.5 NOISE
4.5.4 NPS of a Cascaded Imaging System

It is common to Add or Subtract or otherwise manipulate 

medical images

A classic example is 

Digital Subtraction Angiography (DSA)

In DSA, a projection image with contrast agent is subtracted 

from a pre-contrast mask image to produce an image that 

shows the Difference in attenuation between the two images 

which arises from the contrast agent

Image Subtraction
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4.5 NOISE
4.5.4 NPS of a Cascaded Imaging System

Strictly speaking, the Logarithms are subtracted

In the absence of patient motion, the resultant image depicts 

the 

Contrast Enhanced Vascularity

Image Subtraction
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4.5 NOISE
4.5.4 NPS of a Cascaded Imaging System

The effect of the subtraction is to Increase the image noise

This arises because for a given pixel in the image, the pixel 

values in the mask and the contrast-enhanced images are 

Uncorrelated

As a result, the subtraction incorporates the noise of Both
images

Image Subtraction
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4.5 NOISE
4.5.4 NPS of a Cascaded Imaging System

Noise adds in Quadrature, thus the noise in the subtracted 

image is √2 larger than the noise is in the source images

To Ameliorate the noise increase in the subtraction image, it is 

typical to

Acquire the Mask Image at Much Higher Dose

thereby reducing the contribution of the mask noise to the 

subtraction

Image Subtraction
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4.5 NOISE
4.5.4 NPS of a Cascaded Imaging System

Consider this simple 

imaging system:

Primary & Secondary Quantum Noise

The concept of Quantum 
Accounting is illustrated

A simple X-ray detector is 

shown

At each stage of the imaging 

system, the number of quanta 

per incident X-ray is 

calculated to determine the 

Dominant noise source
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4.5 NOISE
4.5.4 NPS of a Cascaded Imaging System

Primary & Secondary Quantum Noise

In this system:

� X-ray quanta are incident on a phosphor screen (Stage 1)

� A fraction of those quanta are absorbed to produce light 

(Stage 2)

� A substantial number of light quanta (perhaps 300-3000) are 

produced per X-ray quantum (Stage 3)

� A small fraction of the light quanta are collected by the lens 

(Stage 4)

� A fraction of the collected light quanta produce carriers in 

the optical image receptor (e.g. a CCD camera) (Stage 5)
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4.5 NOISE
4.5.4 NPS of a Cascaded Imaging System

Primary & Secondary Quantum Noise

The process of producing an electronic image from the 

source distribution of X-rays will necessarily introduce noise

In fact, each stage will alter the noise of the resultant image

In this simple model, there are two primary sources of noise:

� X-ray (or Primary) quantum noise

� Secondary quantum noise
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4.5 NOISE
4.5.4 NPS of a Cascaded Imaging System

Primary & Secondary Quantum Noise

Secondary Quantum Noise - noise arising from:

� Production of light in the phosphor

� Transmission of light through the optical system and

� Transduction of light into signal carriers in the optical 

image receptor

Both the light quanta and signal carriers are:

Secondary Quanta
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4.5 NOISE
4.5.4 NPS of a Cascaded Imaging System

Primary & Secondary Quantum Noise

Each stage involves a Random process

The generation of X-ray quanta is governed by a Poisson
process

In general, we can treat the generation of light quantum from 

individual X-ray quanta as being Gaussian

Stages 3 - 5 involve the selection of a fraction of the 

secondary quanta and thus are governed by Binomial
processes
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4.5 NOISE
4.5.4 NPS of a Cascaded Imaging System

Primary & Secondary Quantum Noise

The Cascade of these processes can be calculated 

mathematically

However, a simple approach to estimating the dominant noise 

source in a medical image is to determine the number of 

quanta at each stage of the imaging cascade:

the Stage with the Minimum Number of 
Quanta will be the Dominant Noise Source
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.1 Quantum Signal-to-Noise Ratio

There is a fundamental Difference between the high-contrast 

and low-contrast resolution of an imaging system

In general, the high-contrast resolution is limited by the 

intrinsic blurring of the imaging system

At some point, the system is unable to resolve two objects that are 

separated by a short distance, instead portraying them as a single object

However, at Low Contrast, objects (even very large objects) 

may not be discernible because the signal of the object is 

substantially Lower than the noise in the region containing the 

object
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.1 Quantum Signal-to-Noise Ratio

Generally, the Signal-to-Noise Ratio (SNR) is defined as the 

inverse of the Coefficient of Variation:

where〈g〉is the mean value
σg the standard deviation

This definition of the SNR requires that a single pixel (or 

region) be measured repeatedly over various images (of the 

ensemble), provided that each measurement is Independent
(i.e. there is no correlation with time)
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.1 Quantum Signal-to-Noise Ratio

In an Ergodic system, the ensemble average can be replaced 

by an average over a region

This definition is of value for photonic (or quantum) noise 

because in a uniform X-ray field, X-ray quanta are Not spatially 

correlated

However, most imaging systems do blur the image to some 

degree, and hence introduce Correlation in the noise

As a result, it is Generally Inappropriate to calculate pixel 

noise by analysing pixel values in a region for absolute noise 

calculations
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.1 Quantum Signal-to-Noise Ratio

The Definition of SNR as

is only useful when the image data are always positive, such 

as photon counts or luminance

In systems where Positivity is not guaranteed, such as an 

ultrasound system, the SNR is defined as the Power Ratio, 

and is typically expressed in decibels:

where P is the average power and A is the root mean square 

amplitude of the signal, s, or noise, n
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.2 Detective Quantum Efficiency

Based on the work of Albert Rose, it is clear that the image 

quality of X-ray imaging systems is determined by the number 

of quanta used to produce an image

This leads to the definition of the DQE:

A Measure of the Fraction of the Quantum SNR of 
the Incident Quanta that is Recorded in the Image 

by an Imaging System

Thus, the DQE is a measure of the Fidelity of an imaging 

system
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.2 Detective Quantum Efficiency

It is common to Define the DQE as:

where the SNR2 of the image is denoted by the subscript out
and the SNR2 of the Incident X-ray quanta is given by:

where � is the Average number of
X-ray quanta incident on the detector
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.2 Detective Quantum Efficiency

Rodney Shaw introduced the concept of the DQE to medical 

imaging and also introduced the term Noise-Equivalent 
Quanta (NEQ)

The NEQ is the effective number of quanta needed to achieve 

a specific SNR in an ideal detector

We can write:                          so that
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.2 Detective Quantum Efficiency

In some sense, 

the NEQ denotes the Net Worth of the image data in terms 

of X-ray quanta

and 

the DQE defines the Efficiency with which an imaging 

system converts X-ray quanta into image data
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.2 Detective Quantum Efficiency

This definition of DQE is the Zero Spatial Frequency value of 

the DQE

Zero spatial frequency refers to a detector that counts X-ray 

quanta but does not produce a pixelated image

i.e. we only care about the Efficiency of counting the X-ray 

quanta

Thus � is a simple count of the X-ray quanta incident on the 

detector
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.2 Detective Quantum Efficiency

By this definition, an imaging system which:

� Perfectly absorbs each X-ray and

� Does not introduce any other noise

will Perfectly Preserve the SNR of the X-ray quanta

and hence:

NEQ = �
and 

DQE = 1
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.2 Detective Quantum Efficiency

If we consider an X-ray detector that is Perfect in every way 

Except that the quantum detection efficiency ƞ<1.0, we 

observe that while the incident number of quanta is again �, 

only ƞ� quanta are absorbed

As a result:

NEQ =  ƞ� and DQE = ƞ

Thus, in this special instance, the DQE is equal to the quantum 

detection efficiency, ƞ, the efficiency with which X-ray quanta 

are absorbed in the detector

Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 4, 161



IAEA

4.6   ANALYSIS OF SIGNAL & NOISE
4.6.2 Detective Quantum Efficiency

The DQE can be more generally expressed in terms of spatial 

frequencies:

where we rely upon the property that X-ray quantum noise is 

White, leading to the SNRin being a constant

Here, Φ is the Photon Fluence
and has units of Inverse Area
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.2 Detective Quantum Efficiency

The DQE(u, v) tells us how well the imaging system preserves 

the SNRin at a specific spatial frequency, (u,v)

In a similar fashion, NEQ(u, v) denotes the effective number of 

quanta that the image is worth at that frequency
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.2 Detective Quantum Efficiency

The NEQ and DQE can be calculated from Measurable 
Quantities - specifically:

and

It is clear from these equations that in an ideal system, the NPS 

is proportional to the MTF squared
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.2 Detective Quantum Efficiency

Standard measurement conditions for the NEQ and DQE have 

been specified by the IEC

Most typically, an RQA-5 spectrum is used for radiography and 

RQA-M for mammography

Tabulations of fluence as a function of air kerma are used in 

conjunction with measurements of kerma to calculate Φ
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.3 Signal-to-Noise Ratio

As we’ve defined it, the quantum SNR is related to the relative 

variation of pixel values in a Uniform Region

However, it is often necessary to compare the amplitude of a 

specific signal to the Background Noise

An Alternate Definition of the SNR is the difference in the 

means of two regions to the noise in those regions:

where xa and xb are the mean values in the region of an object (a) and 

background (b) and σ is the standard deviation of the background
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.3 Signal-to-Noise Ratio

A uniform disk (a) is shown on a uniform background (b) in the 

presence of X-ray quantum noise

The SNR of the object is calculated as the difference in the mean signals 

divided by the noise characterized by the standard deviation (σ) of the 

Background
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.3 Signal-to-Noise Ratio

The choice of the background region is important:

the Standard Deviation should be Calculated 
using the Region that yields a Meaningful Result

For Example, if image processing (such as Thresholding) is 

used to force the background to a uniform value, then SNR as 

defined will be indefinite

Note that the SNR as defined goes by a number of names, 

including the signal difference to noise ratio (SdNR) and the 

contrast to noise ratio (CNR)
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.3 Signal-to-Noise Ratio

The value of the SNR was first explained by Albert Rose
who was interested in quantifying

the quality of television images

Rose showed that an object is distinguishable from the 

background if the

SNR ≥ 5

This can be related to a simple t-test in which an error rate of 

less than 1 in 106 occurs when the difference in the means is 

equal to 5 standard deviations
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.3 Signal-to-Noise Ratio

Today, this is known as the Rose Criterion in imaging 

research

It should be noted that the requirement of SNR ≥ 5 is actually 

quite strict

Depending upon the image task, it is possible to successfully 

operate at lower SNR values
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.3 Signal-to-Noise Ratio

Assumption of the Rose model: the limiting factor in the 

detection of an object is the radiation dose (and hence number 

of X-ray quanta) used to produce the image

This is True
in an ideal imaging system

In fact, the design of all imaging systems is driven by the goal 

of being X-ray (primary) quantum noise limited
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.3 Signal-to-Noise Ratio

Robert Wagner has proposed a Taxonomy of noise 

limitations which is worth noting

There are Four potential limitations in terms of the detection of 

objects:

1) Quantum Noise limited

2) Artefact limited

3) Anatomy limited

4) Observer limited
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.3 Signal-to-Noise Ratio

X Ray Quantum Noise Limited performance is the Preferred
mode of operation, because the ability to detect or discriminate 

an object is determined solely by the radiation dose

This is How All Detectors Should Operate
Ideally
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.3 Signal-to-Noise Ratio

Artefact limitation is the case in which the imaging system 

introduces artefacts which limit detection

Classic examples include CT and MR where acquisition 

artefacts can predominate over the signal of interest

Anatomic limited detection occurs when the normal anatomy 

(e.g. ribs in chest radiography or the breast parenchyma in 

mammography) mask the detection of objects, thereby 

reducing observer performance
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.3 Signal-to-Noise Ratio

Finally, there are situations in which the Observer is the limiting 

factor in performance

For Example, a lesion may be readily visible, but the observer is 

distracted by an obvious benign or normal finding

Thus Detection was Possible but did Not Occur

In this chapter, we deal exclusively with quantum noise limited 

performance, which can be calculated using Ideal Observer
methods

In Chapter 18, the Modelling of Real Observers is discussed
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.3 Signal-to-Noise Ratio

The MTF, NPS, NEQ and DQE are Frequency dependent 

characterizations of the detector

However, these allow us to Calculate the image of a scene

In particular, we can now use the SNR to quantify the ability of 

the detector to be used in:

� Signal Known Exactly (SKE),

� Background Known Exactly (BKE) tasks

assuming an ideal observer working with Gaussian statistics

Task-Specific
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.3 Signal-to-Noise Ratio

In this scenario, the observer is challenged with the task of 

deciding between Two hypotheses based upon a given set of 

data

Under the First Hypothesis, the expected input signal is 

present, fI, and the image gI is described by an appropriate 

Gaussian probability distribution

Under Alternate Hypothesis, the expected input signal is 

absent, fII

Task-Specific
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.3 Signal-to-Noise Ratio

The SNR of this task is given by:

Task-Specific

where

is the difference between the 

signal Absent and Present
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.3 Signal-to-Noise Ratio

For a digital detector, T is the presampled MTF, and thus we 

must account for aliasing by summing over all aliases of the 

signal:

Task-Specific

where the indices j, k are used to index the aliases (in 2D)

In this way, we can calculate the SNR of the ideal observer for 

the detection of any object in an SKE/BKE task
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4.6.3 Signal-to-Noise Ratio

In Chapter 18, methods are described that extend this model 

to include characteristics of Real Observers

Task-Specific
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.4 SNR2/Dose

The Ultimate Goal of radiation safety in medical imaging is to 

obtain a Figure of Merit based on the maximum benefit to the 

patient for the smallest detriment

We can now calculate the SNR for the detection of a known 

object (for example a tumour) on a known background

This calculation is based upon parameters of a specific 

detector so that detectors can be Compared or Optimized
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.4 SNR2/Dose

This calculation can act as a useful surrogate of the benefit, 

since a disease once detected can be treated

We need therefore to relate this benefit to some Metric of Risk

A Useful metric:

where E is the Effective Dose
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4.6   ANALYSIS OF SIGNAL & NOISE
4.6.4 SNR2/Dose

This metric is formulated with the SNR2 based on the fact that 

in quantum noise limited imaging the 

Thus the ratio is Invariant with dose

Other Descriptors of patient dose may also be useful

for example, optimization in terms of skin dose

Using this formation, it is possible, for example, to determine 

the Optimal Radiographic Technique (tube voltage, filtration, 

etc) for a specific task
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