XRD Lattice Parameter

Why are $\mathrm{K} \alpha_{1}$ and $\mathrm{K} \alpha_{2}$ peaks resolved at high angles? \&

Which 'Line' to use for lattice parameter calculation?
\square At higher Bragg angles the $K \alpha_{1}$ and $K \alpha_{2}$ lines are resolved (reason shown in the next slide)
Typically we use only the $\mathrm{K} \alpha_{1}$ lines for the calculation of lattice parameter
\square The error in the calculation of lattice parameter decreases with increasing angle \rightarrow hence the high angle peaks should be used for lattice parameter calculation (instead of taking an average over all peaks or taking any of the intense low angle peaks)

Why are $\mathrm{K} \alpha_{1}$ and $\mathrm{K} \alpha_{2}$ peaks resolved at high angles?

\square The $K \alpha_{1}\left(\mathrm{Cu}_{\mathrm{K} \alpha 1}=1.540598 \AA\right)$ and $K \alpha_{2}\left(\mathrm{Cu}_{\mathrm{K} \alpha 2}=1.54439 \AA\right)$ lines differ slightly in wavelength. Hence, in principle two separate peaks should be seen in the diffraction pattern.
\square Usually, at low angles these peaks are merged (i.e. seen as a single peak) and at high angles these peaks are resolved (seen as two separate peaks). The question is why?
\square This can be understood in terms of the variation of θ with λ (as in this case λ is not fixed) and the graphical (Ewald sphere) construction (upcoming slides).

Ewald spheres corresponding to α_{1} and α_{2} (drawn exaggerated)
$n \lambda=2 d \operatorname{Sin} \theta \quad \frac{d \lambda}{d \theta}=2 d \operatorname{Cos} \theta$
$\frac{d \theta}{d \lambda}=\frac{1}{2 d \operatorname{Cos} \theta}$

- α_{1} and α_{2} differ slightly in wavelength
- The difference in the diffracted angle $\Delta \theta$ increases with an increasing angle of diffraction θ (for a given $\Delta \lambda$). Plot of variation as above.
- Hence, the α_{1} and α_{2} peaks are resolved at high angles

Actually, the variation in 2θ is to be seen

Ewald spheres corresponding to α_{1} and α_{2} (drawn exaggerated)

Which 'Line' to use for lattice parameter calculation?

\square Typically we use only the $\mathrm{K} \alpha_{1}$ lines for the calculation of lattice parameter. And this can be done at high angles as the $\mathrm{K} \alpha_{1} \& \mathrm{~K} \alpha_{2}$ lines are resolved at high angles.
\square The error in the calculation of lattice parameter decreases with increasing angle \rightarrow hence the high angle peaks should be used for lattice parameter calculation (instead of taking an average over all peaks or taking any of the intense low angle peaks) (as shown in slides to follow).

Let us calculate the error in d spacing as a function of the angle of diffraction

$$
d=\frac{\lambda}{2 \operatorname{Sin} \theta}
$$

Error in d spacing decreases with θ
\rightarrow hence high angle peaks have to be used for lattice parameter calculation

Determination of Lattice parameter from 2θ versus Intensity Data

\mathbf{n}	$\mathbf{2 \theta}$	$\boldsymbol{\theta}$	$\operatorname{Sin} \theta$	$\operatorname{Sin}^{\mathbf{2}} \boldsymbol{\theta}$	ratio	Index	$\mathbf{a (n m)}$
1	38.52	19.26	0.33	0.11	3	111	0.40448
2	44.76	22.38	0.38	0.14	4	200	0.40457
3	65.14	32.57	0.54	0.29	8	220	0.40471
4	78.26	39.13	0.63	0.40	11	311	0.40480
5^{*}	82.47	41.235	0.66	0.43	12	222	0.40480
6^{*}	99.11	49.555	0.76	0.58	16	400	0.40485
7^{*}	112.03	56.015	0.83	0.69	19	331	0.40491
8^{*}	116.60	58.3	0.85	0.72	20	420	0.40491
9^{*}	137.47	68.735	0.93	0.87	24	422	0.40494

* $\rightarrow \alpha_{1}, \alpha_{2}$ peaks are resolved (α_{1} peaks are listed)
$1.54=2 d_{422} \operatorname{Sin} \theta_{422}=2 \frac{a}{\sqrt{24}} 0.93$

Others methods exist for precise lattice parameter measurement (than just taking a single value)!

$$
a_{\text {Calculated from the } 422 \text { line }}=4.0494 \AA \mathrm{~A}^{\circ}
$$

References:
MATERIALS SCIENCE \& ENGINEERING: \mathcal{A}
Learner's Guíde,
Anandh Subramaniam,
http://home.iitk.ac.in/~anandh/E-book.htm.

