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The crystal lattice: Bravais lattice (3D)
A Bravias lattice is a lattice of points, defined by

would be defined in terms of two vectors a1 and a2 like

R = ma1 + na2,

where n and m are integers. In three dimensions the definition would be

R = ma1 + na2 + oa3.

Such a lattice of points is also called a Bravais lattice. The number of possible
Bravais lattices which differ by symmetry is limited to five in two dimensions
and fourteen in three dimensions. An example of a two-dimensional lattice
is given in Fig. 3.1. The lengths of the vectors a1 and a2 are often called the
lattice parameters.
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Figure 3.1: Example for a two-dimensional Bravais lattice.

Having defined the lattice, we can move on to the definition of the unit
cell. It is any volume of space which, when translated through all the vectors
of the Bravais lattice, fills space without overlap and without leaving voids.
A unit cell can contain several lattice points or it can contain only one. If
the latter is the case, it is called a primitive unit cell. Possible choices of a
unit cell for a two-dimensional rectangular Bravais lattice are given in Fig.
3.2. From the figure it is evident that a non-primitive unit cell has to be
translated by a multiple of one (or two) lattice vectors to fill space without
voids and overlap. A special choice of the primitive unit cell is the Wigner-
Seitz cell which is also shown in Fig. 3.2. It is the area of points which is
closer to one given lattice point than to any other.

The last definition we need to describe an actual crystal is that of a basis.
The basis is what we actually ’put’ on the lattice points, i.e. the building
block for the real crystal. The basis can consist of one or several atoms. It
can even consist of complex molecules in the case of crystals which are used
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This reflects the translational symmetry of the lattice



Bravais lattice (2D)

• The number of possible Bravais lattices (of fundamentally 
different symmetry) is limited to 5 (2D) and 14 (3D).
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The crystal lattice: primitive unit cell
Primitive unit cell: any volume of space which, when translated through all the 

vectors of the Bravais lattice, fills space without overlap and without leaving voids
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• Fig 2.2, Solid State Physics: An Introduction, by Philip 
Hofmann, Wiley-VCH Berlin.

http://philiphofmann.net/
http://philiphofmann.net/
http://www.wiley-vch.de/publish/en/


The crystal lattice: primitive unit cell

Primitive unit cell: any volume of space which, when translated through all the 
vectors of the Bravais lattice, fills space without overlap and without leaving voids
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The crystal lattice: Wigner-Seitz cell

Wigner-Seitz cell: special choice of primitive unit cell: region of points closer to 
a given lattice point than to any other.
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The crystal lattice: basis
• We could think: all that 

remains to do is to put atoms 
on the lattice points of the 
Bravais lattice.

• But: not all crystals can be 
described by a Bravais lattice 
(ionic, molecular, not even 
some crystals containing 
only one species of atoms.)

• BUT: all crystals can be 
described by the combination 
of a Bravais lattice and a 
basis. This basis is what one 
“puts on the lattice points”.
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The crystal lattice: one atomic basis

• The basis can also just consist of one atom.
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The crystal lattice: basis

• Or it can be several atoms.
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The crystal lattice: basis

• Or it can be molecules, proteins and pretty much anything 
else.
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The crystal lattice: one more word about 
symmetry

• The other symmetry to consider is point symmetry. The 
Bravais lattice for these two crystals is identical:

four mirror lines
4-fold rotational axis

inversion
no additional

point symmetry11
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The crystal lattice: one more word about 
symmetry

Chapter 2

Crystals and crystalline
solids

Rmn = ma1 + na2 (2.1)

Rmno = ma1 + na2 + oa3 (2.2)

n⇥ = 2dsin� (2.3)

⇥ =
h⇥

2mE
(2.4)

F = U � TS (2.5)
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Chapter 2

Crystals and crystalline
solids

Rmn = ma1 + na2 (2.1)

Rmno = ma1 + na2 + oa3 (2.2)

TRmnoF (r) = F (r + Rmno) (2.3)

sin� =
UV

d
(2.4)

2UV = n⇥ (2.5)

n⇥ = 2dsin� (2.6)

⇥ =
h⇥

2mE
(2.7)

F = U � TS (2.8)

G = U + PV � TS (2.9)
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The Bravais lattice vectors are

We can define a translation operator T such that

This operator commutes with the Hamiltonian of the solid
and therefore we can choose the eigenfunctions of the 
Hamiltonian such that they are also eigenfunctions of the 
translation operator.
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adding the basis keeps translational 
symmetry but can reduce point symmetry

but it can also add new symmetries 
(like glide planes here)


